Votre recherche
Résultats 76 ressources
-
Abstract Resilience has become a cornerstone for risk management and disaster reduction. However, it has evolved extensively both etymologically and conceptually in time and across scientific disciplines. The concept has been (re)shaped by the evolution of research and practice efforts. Considered the opposite of vulnerability for a long time, resilience was first defined as the ability to resist, bounce back, cope with, and recover quickly from the impacts of hazards. To avoid the possible return to conditions of vulnerability and exposure to hazards, the notions of post-disaster development, transformation, and adaptation (build back better) and anticipation, innovation, and proactivity (bounce forward) were then integrated. Today, resilience is characterized by a multitude of components and several classifications. We present a selection of 25 components used to define resilience, and an interesting linkage emerges between these components and the dimensions of risk management (prevention, preparedness, response, and recovery), offering a perspective to strengthen resilience through the development of capacities. Despite its potential, resilience is subject to challenges regarding its operationalization, effectiveness, measurement, credibility, equity, and even its nature. Nevertheless, it offers applicability and opportunities for local communities as well as an interdisciplinary look at global challenges.
-
Due to limitations in traditional concrete gravity dam (CGD) design, a new approach is necessary. In this study, the lean analysis as a novel approach for CGD design, considering the interaction between dam and reservoir was considered. Maximum and minimum stresses at the heel and displacement of the crest were obtained as crucial input values of bubble sorting based on seismic analysis using Finite element analysis (FEA), and the Fuzzy Analytic Hierarchy Process (FAHP). The fuzzy bubble sorting analytic process, aimed at developing a novel method for selecting the best CGD configuration, was developed. Required Criteria, Sub-Criteria and developed models were applied to optimize the body of CGD. The weight of each sub-criterion and models were calculated based on pairwise comparison matrices. The novel approach was designed in MATLAB with the OPT-CGD code to select the best CGD model. The best weight of the Criteria, for selecting the best CGD model, based on the lean construction principles was selected from 60 developed models under implicit dynamic analysis. Statistical analysis reveals a 20% reduction in the concrete mass of the case study’s optimal body compared to the traditionally designed dam.
-
Abstract The analysis across spatial, temporal and governance scales shows an inequitable distribution of risk across Canada’s Metro Vancouver region. For First Nation communities in this region, this risk is rooted in the colonial history of land dispossession. This article makes a contribution by expanding our understanding of historic creation of riskscapes and a discussion of its implications as a multiscale governance issue that persists across space and time. This article also situates the impacts of projected sea level rise on Indigenous communities in the context of regional, provincial and federal settler-colonial flood risk management regime.
-
ABSTRACT Large-scale disasters can disproportionately impact different population groups, causing prominent disparity and inequality, especially for the vulnerable and marginalized. Here, we investigate the resilience of human mobility under the disturbance of the unprecedented ‘720’ Zhengzhou flood in China in 2021 using records of 1.32 billion mobile phone signaling generated by 4.35 million people. We find that although pluvial floods can trigger mobility reductions, the overall structural dynamics of mobility networks remain relatively stable. We also find that the low levels of mobility resilience in female, adolescent and older adult groups are mainly due to their insufficient capabilities to maintain business-as-usual travel frequency during the flood. Most importantly, we reveal three types of counter-intuitive, yet widely existing, resilience patterns of human mobility (namely, ‘reverse bathtub’, ‘ever-increasing’ and ‘ever-decreasing’ patterns), and demonstrate a universal mechanism of disaster-avoidance response by further corroborating that those abnormal resilience patterns are not associated with people’s gender or age. In view of the common association between travel behaviors and travelers’ socio-demographic characteristics, our findings provide a caveat for scholars when disclosing disparities in human travel behaviors during flood-induced emergencies.
-
Flood risk management requires to comprehensively assess how policy strategies may affect individuals and communities. However, policy development and implementation often downplay or even increase social inequality. Analysis of the social and societal implications of strategies and implementation projects to manage flood hazards is still in its infancy. To close this gap, this chapter critically questions the roles of social justice and their political implications for flood risk management with regard to resilience. The chapter discusses and argues how different theoretical concepts as well as different perspectives on justice (e.g. social, environmental and climate justice) and resilience in flood risk management are related. There is a strong need to have a broader and more in-depth discussion about the role of justice in the current resilience debate. Finally, the chapter presents the outline of a future research agenda.
-
Government employees, municipal officials, and communities in South Africa have grappled with post-apartheid environmental challenges, such as floods, droughts, severe storms, and wildfires. These disasters are a result of both natural and human activities. The government implemented different policies and strategies after 1994 to address these issues. While acknowledging some success in managing these disasters with the current adaptive measures, the frequency and intensity of disasters have increased, causing significant damage to life and property, particularly among the vulnerable population. This paper uses qualitative and quantitative data collection approaches to explore possible systematic and structural weaknesses in addressing post-disaster situations in South Africa. Floods appear to be the most frequent natural disaster in South Africa. The paper uncovered the fact that disaster management is a multi-sectoral and multidisciplinary field. Although various institutional arrangements exist, they do not seem appropriate for assisting vulnerable groups. While officials have made some progress in implementing post-disaster projects, challenges still hinder sustainability. Furthermore, regrettably, despite the level of success in addressing disasters, most measures have failed to achieve the intended results for a variety of reasons. The consolidated long-term measures suggested by the participants yielded a proposed ‘South African Floods Post-Disaster Checklist or Model’, which was non-existent in South Africa. By implementing more effective and efficient post-disaster measures, the proposed tool can help policymakers and strategic partners standardise post-disaster resilience and adaptive capacity in various sectors’ sustainability contexts.
-
Abstract Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.
-
This study integrates Land Change Modeling with the Plan Integration for Resilience Scorecard™ methodology to assess coastal communities’ preparedness for uncertain future urban growth and flood hazards. Findings indicate that, under static climate conditions, the network of plans in Tampa is well prepared across all urban growth scenarios, but less so in the face of a changing climate. Specifically, scenario outputs that consider climate change suggest the need for more resilient growth to reduce flood vulnerability compared with the current land use plan. Notably, some existing policies are likely to lead to counterproductive outcomes in a future with more extensive flooding.
-
The increasing severity and frequency of disasters across the USA is revealing a landscape that is not entirely prepared to cope with these exposures. Resilience as a socio-ecological concept has become progressively more important as a means of assessing and mitigating these losses. Technological advances and planning have improved many outcomes, but all populations have not experienced the benefits. In this paper, we focus on the shortcomings of current resilience measures in capturing neighborhood disparities. Much like vulnerability and sustainability, local disparities will have a deleterious impact on the community as a whole. We use the Baseline Resilience Indicators for Communities (BRIC) framework and downscale the index using neighborhood-level Census data (tracts) and variations in household access to community resources. These added variables represent the variation of resilience indicators across a community and capture cross-scale relationships that exist between county and Census tract characteristics. We apply scaled variables in the Pensacola Bay Watershed to demonstrate cross-scaled interactions in the Florida panhandle. Potential modifications and applications of the concepts are also discussed.
-
Canada’s vast regions are reacting to climate change in uncertain ways. Understanding of local disaster risks and knowledge of underlying causes for negative impacts of disasters are critical factors to working toward a resilient environment across the social, economic, and the built sectors. Historically, floods have caused more economical and social damage around the world than other types of natural hazards. Since the 1900s, the most frequent hazards in Canada have been floods, wildfire, drought, and extreme cold, in terms of economic damage. The recent flood events in the Canadian provinces of Ontario, New Brunswick, Quebec, Alberta, and Manitoba have raised compelling concerns. These include should communities be educated with useful knowledge on hazard risk and resilience so they would be interested in the discussion on the vital role they can play in building resilience in their communities. Increasing awareness that perceived risk can be very different from the real threat is the motivation behind this study. The main objectives of this study include identifying and quantifying the gap between people’s perception of exposure and susceptibility to the risk and a lack of coping capacity and objective assessment of risk and resilience, as well as estimating an integrated measure of disaster resilience in a community. The proposed method has been applied to floods as an example, using actual data on the geomorphology of the study area, including terrain and low lying regions. It is hoped that the study will encourage a broader debate if a unified strategy for disaster resilience would be feasible and beneficial in Canada.
-
Abstract. This paper examines the development over historical time of the meaning and uses of the term resilience. The objective is to deepen our understanding of how the term came to be adopted in disaster risk reduction and resolve some of the conflicts and controversies that have arisen when it has been used. The paper traces the development of resilience through the sciences, humanities, and legal and political spheres. It considers how mechanics passed the word to ecology and psychology, and how from there it was adopted by social research and sustainability science. As other authors have noted, as a concept, resilience involves some potentially serious conflicts or contradictions, for example between stability and dynamism, or between dynamic equilibrium (homeostasis) and evolution. Moreover, although the resilience concept works quite well within the confines of general systems theory, in situations in which a systems formulation inhibits rather than fosters explanation, a different interpretation of the term is warranted. This may be the case for disaster risk reduction, which involves transformation rather than preservation of the "state of the system". The article concludes that the modern conception of resilience derives benefit from a rich history of meanings and applications, but that it is dangerous – or at least potentially disappointing – to read to much into the term as a model and a paradigm.
-
Abstract Objective Despite Canada being an important energy producer, not all Canadians can access or afford adequate levels of energy services at home to meet their needs, maintain healthy indoor temperatures, and live a decent life—a situation known as energy poverty. Depending on the measure, 6–19% of Canadian households face energy poverty. Health risks associated with energy poverty are documented in countries with milder climates. This study explores, for the first time in the Canadian context, the association between energy poverty and health. Methods Cross-sectional data are from the 2018 Canadian Housing Survey. Analyses are conducted on a sample weighted to represent 14 million Canadian households. The associations between expenditure-based and self-reported measures of energy poverty and self-rated general and mental health were assessed using logistic regression models, adjusted for potential confounding variables. Results The odds of rating one’s general (OR: 1.48; 95%CI: 1.29, 1.70) and mental (OR: 1.21; 1.04, 1.41) health as poor are significantly higher for Canadian adults in households with a high share of energy expenditure to income. The likelihood of poor general and mental health was significantly higher for those dissatisfied with the energy efficiency of their dwelling, and with their ability to maintain a comfortable temperature both in the winter and in the summer. Conclusion Exposure to energy poverty is associated with significantly increased likelihood of poor general and mental health. Given the high proportion of Canadian households facing energy poverty, with demonstrated implications for population health, tackling energy poverty is essential for an equitable energy transition and for climate resilience. , Résumé Objectif Bien que le Canada soit un important producteur d’énergie, entre 6 % et 19 % des ménages canadiens, selon la mesure retenue, sont en précarité énergétique, une situation qui survient lorsqu’un ménage n’a pas les moyens ou l’accès à des services énergétiques résidentiels adéquats pour maintenir une température ambiante confortable, répondre à ses besoins et vivre dans la dignité. Les risques socio-sanitaires associés à la précarité énergétique sont documentés dans des pays au climat tempéré. Cette étude explore, pour la première fois dans le contexte canadien, l’association entre la précarité énergétique et la santé. Méthodes Les données transversales proviennent de l’Enquête canadienne sur le logement de 2018. Les associations entre différentes mesures de précarité énergétique (mesures basées sur les dépenses des ménages et auto-rapportées) et la santé générale et mentale perçue sont estimées à l’aide de modèles de régression logistique ajustés pour des variables de confusion potentielles. Les analyses sont réalisées sur un échantillon pondéré pour représenter 14 millions de ménages. Résultats Les probabilités de déclarer une mauvaise santé générale (OR : 1,48; IC95% : 1,29-1,70) et mentale (OR : 1,21; 1,04-1,41) sont significativement plus élevées pour les adultes canadiens dont le ménage consacre une part importante de son revenu aux coûts énergétiques. Elles sont aussi significativement plus élevées pour ceux qui déclarent être insatisfaits avec l’efficacité énergétique de leur logement et de leur capacité à maintenir une température confortable en hiver et en été. Conclusion Vivre en situation de précarité énergétique est associée à des probabilités accrues de déclarer une mauvaise santé générale et mentale chez les adultes canadiens. En raison de la proportion élevée de ménages canadiens confrontés à la précarité énergétique et des effets socio-sanitaires que cette situation engendre, lutter contre la précarité énergétique est essentiel pour une transition énergétique équitable et pour la résilience climatique.