Votre recherche
Résultats 394 ressources
-
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.
-
Coastal high tide flooding doubled in the U.S. between 2000 and 2022 and sea level rise (SLR) due to climate change will dramatically increase exposure and vulnerability to flooding in the future. However, standards for elevating buildings in flood hazard areas, such as base flood elevations set by the Federal Emergency Management Agency, are based on historical flood data and do not account for future SLR. To increase flood resilience in flood hazard areas, federal, state, regional, and municipal planning initiatives are developing guidance to increase elevation requirements for occupied spaces in buildings. However, methods to establish a flood elevation that specifically accounts for rising sea levels (or sea level rise-adjusted design flood elevation (SLR-DFE)) are not standardized. Many municipalities or designers lack clear guidance on developing or incorporating SLR-DFEs. This study compares guidance documents, policies, and methods for establishing an SLR-DFE. The authors found that the initiatives vary in author, water level measurement starting point, SLR scenario and timeframe, SLR adjustment, freeboard, design flood elevation, application (geography and building type), and whether it is required or recommended. The tables and graph compare the different initiatives, providing a useful summary for policymakers and practitioners to develop SLR-DFE standards. © 2025 by the authors.
-
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. © 2025 by the authors.
-
In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.
-
The agriculture sector is profoundly impacted by the abiotic stresses in arid or semi-arid regions that experience extreme weather patterns related to temperature (T), precipitation (P), humidity (H), and other factors. This study adopts a flexible approach that incorporates the D-vine copula density to analyze trivariate (and bivariate) joint and conditional hazard risk. The methodology was applied to a case study in the Ait Ben Yacoub region of Morocco. Monthly series for T, H, and P were modeled using the Weibull-2P and Weibull-3P models, selected based on fitness statistics. The survival BB8 copula was best described as joint dependence for pair T–P, rotated BB8 270 degrees copula for T–H, while rotated Joe 270 degrees copula for P–H. The analysis of joint probability stress focused on both primary joint scenarios (for OR and AND-hazard conditions) and conditional return periods (RPs) for trivariate and bivariate case. Lower univariate RPs resulted in higher marginal quantiles for T and lower for H and P events. Lower trivariate (and bivariate) AND-joint RPs (or higher concurrence probabilities) were associated with higher T with lower P and H quantiles. The occurrence of trivariate (and bivariate) events was less frequent in the AND-joint case compared to the OR-joint case. The conditional joint RP of T (or T with P, or T with H) was significantly affected by different P (at 10th and 25th percentile) and H (at 5th and 25th percentile) (or P, or H) conditions. Lower conditional RPs of T (or T with H, or T with P) had resulted at given low P and H (or low P, or low H levels). In conclusion, the estimated risk statistics are vital for the study region, highlighting the need for effective adaptation and resilience planning in agriculture crop management.
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
Dealing with the risks of climate change and disaster is a political process. It produces winners and losers, mobility and permanence, radical change and continuity, relief and suffering. For some, it ultimately leads to life or death. Yet consultants, academics, humanitarian agents, and politicians often simply propose well-intentioned ideas—resilience, sustainability, community participation, emergency shelter, green development—while failing to perceive the blind spots and unintended consequences of such approaches.Debating Disaster Risk brings together leading global experts to explore the controversies that emerge—and the tough decisions that must be made—when cities, people, and the environment are at risk. Scholars and practitioners discuss the challenges of reducing vulnerability and rebuilding after destruction in an accessible and lively debate format, with commentary by researchers, students, and development workers from across the world. They emphasize the ethical consequences of decisions about how cities and communities should prepare for and react to disasters, considering issues such as housing, environmental protection, urban development, and infrastructure recovery.A valuable resource for scholars, students, and practitioners in a variety of fields, this book provides an in-depth analysis of the difficult choices we face in dealing with disasters. As climate change accelerates, Debating Disaster Risk invites readers to grapple with the most pressing controversies.
-
Climate change-induced floods will have a profound impact on densely populated urban areas. The survey results indicate that a substantial proportion of respondents engaged in evacuation behavior during urban flooding events. However, current assessment methods may underestimate the impact of human motions in floodwaters on pedestrian evacuation safety. To quantitively study the dynamic vulnerability of individuals exposed to flooding scenarios, an agent-based vulnerability model was proposed based on mechanics modelling and experimentally calibrating. A full-scale physical testing platform was constructed and utilized to calibrate the proposed model and to determine the stability limits of pedestrian safety in floodwaters. Spatial and temporal dynamic characteristics of pedestrians were analyzed and results reveal significant variations in pedestrian movement and stability. The general temporal trend of movement speed changing as a power function of the specific flood force has been validated. It is also found that pedestrian stability is notably affected by movement in floodwaters, particularly when walking against the flow, which intensifies the risk of instability, leading to vulnerability indices that increase by 123.2 % at a depth of 0.3 m and by 82.7 % at 0.5 m compared to still-water conditions. In contrast, moving with the flow reduces hydrodynamic forces, although the rate of this reduction decreases with greater water depths, dropping to 16.0 % at 0.5 m and 9.7 % at 0.7 m. Additionally, this work provides guidelines for assessing pedestrian evacuation vulnerability that enhances evacuation safety and supports flood management. © 2025 Elsevier B.V.
-
Flooding remains a critical hydrological hazard in the Itang watershed within the Lower Baro-Akobo Basin, requiring an in-depth assessment of flood susceptibility. This study employs a multi-criteria evaluation method, integrating key geospatial and hydrological parameters such as topographic slope, elevation, land use/land cover, River proximity, drainage network density, precipitation intensity, and soil properties. Utilizing a Multi-Criteria Decision Analysis (MCDA) approach within the ArcMap 10.3.1 environment, a flood hazard zonation map was generated, classifying the watershed into five risk categories: Very high, high, moderate, low, and very low. The findings reveal that approximately 69.69% of the watershed falls within the high to very high flood risk zones, predominantly influenced by low-lying Elevation, gentle slopes, proximity to the river, land cover dynamics, high drainage density, and precipitation variability. These insights emphasize the necessity of integrating robust flood mitigation measures, early warning mechanisms, and sustainable watershed management interventions to enhance flood resilience and reduce hydrological risks in the study watershed. © The Author(s) 2025.
-
Industrial facilities and critical infrastructure are affected by natural disasters with increasing probability, potentially resulting in serious health impacts, environmental pollution, and economic losses. Deep uncertainty about future scenarios leads to under-adaptation due to the inability of existing knowledge to cope with ambiguity and complexity. With scientific constraints, particularly in model limitations and scenario scarcity, estimating the likelihood of risk events and possible implications is challenging and error-prone. Using systems thinking to guide scenario planning, a Pressure-State-Response (PSR) model of Natech risk was developed to outline the uncertainty involved in the full course of the Natech event in this paper. Taking the flood-triggered Natech risks as an example, a robust decision-making (RDM) framework was adopted to analyze the impacts of future extreme rainfall scenarios on the city. Obtaining future rainfall scenarios through screening and quantitative analysis of uncertainties and their intervals of variability under the impact of climate change. By evaluating urban disaster curves that may be triggered in the future, an interpretive structural model (ISM) of the future urban response to the Natech accident scenario was constructed, and prioritized adaptation paths were selected to enhance urban resilience. © 2025 Elsevier Ltd
-
Amid increasing extreme weather events driven by global climate change, pre-emptive emergency drills are vital for strengthening disaster resilience. This paper focuses on risk identification and prevention in multi-level flood and typhoon prevention emergency drills, aiming to achieve effective risk management across administrative levels. Through literature review and expert consultation, 24 risk factors were hierarchically identified. A quantitative risk assessment model was developed by integrating the risk matrix and cloud model eigenvalues. The results show that risks are the most serious at municipal-level drills, with 20 risk factors (79.17 % of the total) at Level-III and above, decreasing at lower administrative levels (where risk level are categorized into Level-I (Major), Level-II (Large), Level-III (General), and Level-IV (Low) based on the risk matrix integrating likelihood and consequence levels, and Level-III and above risks may trigger resource wastage, drill failure, or even personnel casualties). Temporally, 39 risk factors at Level-III and above were concentrated in preparation stages across all administrative levels, declining to 3 such risk factors during rectification stage. Spatially, the number of risk factors peaked during the municipal-level and county-level preparation stages (11 risk factors respectively at Level-III and above), with their quantity gradually decreasing as the administrative level decreases and drill stages advance. Based on these findings, a systematic risk prevention matrix is proposed to offer targeted guidance for multi-level flood and typhoon prevention emergency drills in addressing climate change-induced disaster challenges. © 2025 The Authors
-
Despite investments in disaster resilience, flooding continues to disrupt healthcare systems, both by limiting access and through failures in the surrounding transportation network. Existing models for mitigation planning often overlook critical dynamics, such as traffic rerouting, particularly at the national scales necessary for effective planning. Here we present a scalable method to identify hospitals at risk of emergency response delays and service disruptions caused by flood-induced traffic impacts. Our approach integrates a regional flood model with a gravity-based traffic model to simulate traffic flow from open-source road data. Our findings reveal hidden risks for hospitals located far from flood zones, showing how flood-related road disruptions and traffic rerouting can reduce access to critical healthcare services. In particular, we found 75 (of 2,475) hospitals at risk of patient surges beyond their regular capacity, driven solely by flood-related traffic disruptions. Of these, a third are more than 10 km from the nearest inundation, suggesting these facilities may be unaware and thus under-prepared — risks that have, until now, remained hidden from assessments. © The Author(s) 2025.
-
Urban flooding frequently causes significant damage to infrastructure and facilities, leading to critical supply shortages in affected regions. Ensuring rapid and efficient distribution of relief supplies remains a key challenge during disaster response operations. This study proposes a two-stage optimization framework for emergency logistics. First, a supply distribution model is developed by integrating resource scarcity indices and disaster severity indices, optimized through a simulated annealing algorithm. Second, a vehicle routing model accounting for rainfall and dynamic vehicle speeds is established, solved using a hybrid Genetic Simulated Annealing algorithm to enhance computational efficiency. Ultimately, through simulation with randomly generated calculation examples, it was found that for the supply distribution model, the allocation model that takes into account both the resource scarcity index and the disaster index is more suitable for scenarios with an uneven distribution of disaster severity. The results of the model that takes into account the resource scarcity index, disaster index and waiting time index shows an improvement of 4% over the model that doesn’t consider the resource scarcity index. The experimental results show that the proposed methodology not only adapts to varying disaster spatial patterns but also balances efficiency and equity under supply constraints, offering a scalable tool for designing resilient urban flood response systems. © The Author(s) 2025.
-
This study presents a novel multi-scale flood risk assessment framework for cultural heritage sites, applied to the Temple of Apollo, Aegina Island, Greece. Three modeling configurations were developed and compared: (i) an island-wide Rain-on-Grid (RoG) hydraulic model at 5 m resolution, (ii) a site-only model driven by inflows from the island-scale simulation, and (iii) a high-resolution nested model coupling island-scale outputs with centimeter-scale site RoG simulations enabled by UAV photogrammetry. Simulations for 100-, 1000-, and 2000-year return periods revealed strong scale-dependent differences: island-wide inundation extents of 7.3–10.3 km2, site-specific inundation of 2–24 %, and water volumes of 92–1483 m3 depending on the model configuration and return period. Flow velocities remained below 1.0 m/s, indicating low erosive potential but possible material degradation. Limestone deterioration analysis showed 4–10 % compressive strength reduction, 3–9 % elastic modulus decrease, and mass losses of 0.64–26.08 kg after 24-h inundations. The nested approach provided more realistic water volume accumulation over the single-scale model and revealed critical micro-topographic controls on flood behavior. This scalable, built on readily accessible tools (HEC-RAS and UAV), framework supports rapid deployment to heritage sites globally, enabling quantitative risk assessments for adaptation planning and conservation prioritization. © 2025 The Authors
-
Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors
-
Urban flood disasters pose substantial threats to public safety and urban development, with climate change exacerbating the intensity, frequency, and consequences of such events. While existing research has predominantly concentrated on flood control and disaster response, limited attention has been paid to the underlying drivers and evolutionary mechanisms of urban flood resilience. This study applies the resilience framework to develop an integrated methodology for assessing urban flood resilience. Focusing on three coastal provinces in China that frequently experience severe flooding, the study identifies fifteen key resilience drivers to construct a compound driver system. The evolution of flood resilience is examined through the lens of the Pressure-State-Response (PSR) model, which categorizes the drivers into three distinct dimensions. The Decision Making Trial and Evaluation Laboratory (DEMATEL) and Interpretative Structural Model (ISM) methods are employed to analyze the interrelationships and hierarchical structure among drivers. In parallel, a system dynamics (SD) modeling approach is used to construct causal-loop and stock-flow diagrams, revealing the complex interdependencies and critical pathways across resilience dimensions. The analysis identifies rainfall intensity as the most influential driver in shaping urban flood resilience. Scenario simulations based on the SD model explore variations in resilience performance under three developmental pathways. Findings suggest that enhancing response resilience is crucial under current flood control trajectories. This study contributes novel conceptual and methodological insights into the measurement and evolution of urban flood resilience. It offers actionable guidance for policymakers aiming to strengthen flood risk governance and urban safety. © 2025 Elsevier Ltd
-
This review examines the role of vegetation as a nature-based solution (NBS) for sustainable river corridor management, integrating a wide range of interdisciplinary domains. It synthesizes studies addressing global challenges in river systems, the worldwide adoption of vegetation-based solutions and location-specific field observations from major Indian rivers such as the Brahmaputra and Ganga. This paper also reviews flume-scale experiments on vegetation–flow interactions and explores the biomechanical properties of vegetation, such as root reinforcement that contribute to riverbank stability. In addition, it discusses the selection of suitable species based on specific climatic regions, as reported in the literature. Building on this interdisciplinary understanding, this review highlights the vital role of vegetation in mitigating bank erosion, regulating sediment transport, attenuating floods and enhancing the overall health and resilience of riverine ecosystems and communities. It proposes an integrated framework that combines vegetation with biodegradable materials such as bamboo fencing and geo-bags and conventional engineering measures to address high-flow conditions and ensure long-term riverbank stability. Additionally, a flume-scale physical model study was conducted to investigate near-bank hydrodynamics in the presence of a series of three spurs and a combination of rigid and flexible vegetation. The results indicate that vegetation significantly reduces streamwise velocity near the bank, achieving performance comparable to that of the spur arrangement. This study identifies key challenges, including appropriate species selection, long-term maintenance of vegetation-based solutions and the need for adaptive management strategies. It further emphasizes the importance of stakeholder engagement for successful and sustainable implementation. © 2025 John Wiley & Sons Ltd.
-
Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
-
Climate change poses urgent public health risks from rising global temperatures and extreme weather events, including heatwaves, droughts, and floods, which disproportionately affect vulnerable populations. To address the current silos embedded in climate, environmental, and public health monitoring and surveillance systems, climate-smart public health (CSPH) creates an integrated platform for action across these sectors, enabling more rapid and efficient responses to climate-related public health challenges. In this Personal View, we introduce the concept of CSPH, a data-driven framework designed to monitor, assess, and adapt to climate-related health impacts. CSPH incorporates surveillance, risk assessment, early warning systems, and resilient health-care infrastructure to address the evolving challenges of climate change. The framework adopts an iterative, community-centred model that responds to local needs and incorporates feedback from health-care providers and policy makers. CSPH also leverages data science and artificial intelligence to address a wide range of health concerns, including infectious diseases, non-communicable diseases, nutrition, and mental health. We applied this framework in Madagascar, a region highly vulnerable to climate impacts, where poverty, malnutrition, and frequent extreme weather events make climate adaptation particularly urgent. Early data analysis has shown strong climate sensitivity in important diseases such as malaria and diarrhoea, which could enable preparedness efforts to target some regions more efficiently. CSPH provides a pathway to enhance resilience in such settings by improving the capacity of public health systems to withstand and respond to climate-related stressors. © 2025 The Author(s)
-
The Internet of Things (IoT) has become increasingly important in flood risk management (FRM). This trend emerged as climate change intensified flooding events, driving the urgent need for localised early warning systems. Previous studies demonstrated the effectiveness of IoT sensors in forecasting potential floods and supporting flood modelling. However, comprehensive research addressing all FRM stages - prevention, mitigation, preparedness, response, and recovery - has remained limited. To address this research gap, this study identified five key IoT sensor categories: water quantity, water quality, rainfall intensity, weather conditions, and catchment characteristics. The roles, objectives, and applications of these sensors across FRM stages were then investigated. Results showed that water quantity sensors were the most common, accounting for 48% of documented IoT applications. Weather condition sensors (27%) and rainfall intensity sensors (21%) were also widely used, especially after 2021. Additionally, IoT-based FRM had three primary Objectives flood modelling (61%), alerting (25%), and visualisation (14%). Most cases (42%) focused on the preparedness stage, while prevention (8%) and recovery (5%) were underrepresented, highlighting clear gaps in existing research. The review also revealed several overlooked sensor types, including groundwater level, biochemical oxygen demand, and nitrite sensors. Despite their potential to enhance quality-based flood modelling, these sensors were rarely utilised. Consequently, the study emphasised the need for broader integration of IoT sensors throughout all FRM stages. Such integration could support more resilient, data-driven flood management strategies, particularly in regions where IoT deployment has remained limited. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.