Votre recherche
Résultats 43 ressources
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
In recent years, understanding and improving the perception of flood risk has become an important aspect of flood risk management and flood risk reduction policies. The aim of this study was to explore perceptions of flood risk in the Petite Nation River watershed, located in southern Quebec, Canada. A survey was conducted with 130 residents living on a floodplain in this river watershed, which had been affected by floods in the spring of 2017. Participants were asked about different aspects related to flood risk, such as the flood hazard experience, the physical changes occurring in the environment, climate change, information accessibility, flood risk governance, adaptation measures, and finally the perception of losses. An analysis of these factors provided perspectives for improving flood risk communication and increasing the public awareness of flood risk. The results indicated that the analyzed aspects are potentially important in terms of risk perception and showed that the flood risk perceptions varied for each aspect analyzed. In general, the information regarding flood risk management is available and generally understandable, and the level of confidence was good towards most authorities. However, the experiences of flood risk and the consequences of climate change on floods were not clear among the respondents. Regarding the adaptation measures, the majority of participants tended to consider non-structural adaptation measures as being more relevant than structural ones. Moreover, the long-term consequences of flooding on property values are of highest concern. These results provide a snapshot of citizens’ risk perceptions and their opinions on topics that are directly related to such risks.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
Dam spillways are susceptible to a range of engineering challenges including structural deficiencies, insufficient discharge capacity, and mechanical failures; however, a particularly significant issue is hydraulic erosion, which poses a significant threat to dam infrastructure. This necessitates a comprehensive assessment of both hydraulic and rock mechanical parameters to ensure structural integrity and operational resilience. In the rock mechanical aspect of hydraulic erosion, the resistive capacity of the material holds great importance, while in the hydraulic aspect, the erosive force of water plays a pivotal role. Hence, neglecting these incidents would increase the risk of overtopping and subsequent downstream flooding, thereby impacting the overall safety and operational reliability of the dam. This study focuses on investigating the hydraulic parameters of a smooth surface unlined open channel spillway. By utilizing both numerical modeling and experimental analysis, we aim to explore how variations in these parameters impact erosion in dams’ spillways. The research centers on the Romaine 4 dam spillway, situated in the northeastern region of Quebec in Canada as a representative case study. The physical model of this spillway was constructed at the Université du Québec à Chicoutimi, where we carried out the experimental analyses. In this research, we also conducted a comprehensive numerical analysis using Finite Volume Method (FVM), enabling a detailed examination of three-dimensional flow behavior within the spillway. This enabled a precise monitoring of the fluid motion patterns. Moreover, an experimental approach was utilized to enhance the accuracy and reliability of the results. This involved conducting detailed tests on the reduced-scale model using a XYZ robotic system capable of movement in X,Y,Z directions and capturing position, velocity and pressure. The results of numerical and experimental analyses reveal that the numerical model effectively captures the overall flow characteristics, closely predicting the average velocity throughout the channel. However, it indicates limitations in accurately predicting extreme velocities, such as maximum and minimum values. The results show that the maximum discrepancies between experimental and numerical data primarily concern extreme velocities, with the numerical model underestimating maximum velocities and overestimating minimum velocities, with errors more pronounced at higher flow rates and upstream. This discrepancy can reach up to 60% in certain areas. Furthermore, the study examined the effects of gates on variability of hydraulic parameters like flow depth and velocity. The analysis of a number of gate configurations revealed that double-gate spillways maintain more consistent flow depths across all significant cross-sections. By explaining the complex interaction between hydraulic behavior and spillway design, this research attempts to advance our understanding of hydraulic-prone erosion areas in dam spillways and ensure the long-term resilience of dam infrastructure. Les évacuateurs de crues des barrages sont sujets à divers défis d'ingénierie, incluant des défaillances structurelles, une capacité d'évacuation insuffisante et des pannes mécaniques; cependant, l'érosion hydraulique constitue une problématique particulièrement importante qui menace l'infrastructure des barrages. Il est donc nécessaire d’évaluer de manière approfondie les paramètres hydrauliques et mécaniques des roches afin d’assurer l’intégrité structurelle et la résilience opérationnelle. Dans l’aspect mécanique des roches concernant l’érosion hydraulique, la capacité de résistance du matériau revêt une grande importance, tandis que dans l’aspect hydraulique, la force érosive de l’eau joue un rôle essentiel. Par conséquent, ignorer ces phénomènes augmenterait le risque de débordement et d’inondation en aval, impactant ainsi la sécurité et la fiabilité opérationnelle globale du barrage. Cette étude se concentre sur l’analyse des paramètres hydrauliques d'un évacuateur de crues à canal ouvert non revêtu et à surface lisse. En utilisant à la fois la modélisation numérique et l’analyse expérimentale, nous visons à explorer comment les variations de ces paramètres influencent l’érosion dans les évacuateurs de crues des barrages. La recherche porte sur l’évacuateur de crues du barrage Romaine 4, situé dans la région nord-est du Québec au Canada, en tant qu’étude de cas représentative. Le modèle physique de cet évacuateur a été construit à l’Université du Québec à Chicoutimi, où nous avons effectué les analyses expérimentales. Dans cette recherche, nous avons également réalisé une analyse numérique complète en utilisant la méthode des volumes finis (FVM), permettant un examen détaillé du comportement tridimensionnel de l’écoulement dans l’évacuateur. Cela a permis un suivi précis des schémas de mouvement du fluide. En outre, une approche expérimentale a été utilisée pour accroître la précision et la fiabilité des résultats, en réalisant des tests détaillés sur le modèle réduit à l’aide d’un système robotisé XYZ qui est capable de se déplacer dans trois directions (X, Y, Z), pour effectuer des prises de mesures de position, vitesse et pression. Les résultats des analyses numériques et expérimentales révèlent que le modèle numérique capture efficacement les caractéristiques générales de l’écoulement, prédisant de manière précise la vitesse moyenne dans le canal. Cependant, il présente des limitations dans la prédiction précise des pression dynamique et statique extrêmes comme les valeurs maximales et minimales. Les résultats montrent que les écarts maximaux entre les données expérimentales et numériques concernent principalement les vitesses extrêmes, le modèle numérique sous-estimant les vitesses maximales et surestimant les minimales, avec des erreurs plus marquées aux débits élevés et en amont. Cet écart peut aller jusqu’aux 60% à certains endroits. Par ailleurs, l’étude a examiné les effets des vannes sur la variabilité des paramètres hydrauliques tels que la profondeur de l’écoulement et la vitesse. L’analyse de plusieurs configurations de vannes a révélé que les évacuateurs à double vanne maintiennent des profondeurs d’écoulement plus constantes à travers toutes les sections transversales significatives. En expliquant l’interaction complexe entre le comportement hydraulique et la conception des évacuateurs de crues, cette recherche vise à améliorer notre compréhension des zones sujettes à l’érosion hydraulique dans les évacuateurs de barrages et à assurer la résilience à long terme de l’infrastructure des barrages.
-
<p>Spring floods have generated colossal damages to residential areas in the Province of Quebec, Canada, in 2017 and 2019. Government authorities need accurate modelling of the impact of theoretical floods in order to prioritize pre-disaster mitigation projects to reduce vulnerability. They also need accurate modelling of forecasted floods in order to direct emergency responses.&#160;</p><p>We present a governmental-academic collaboration that aims at modelling flood impact for both theoretical and forecasted flooding events over all populated river reaches of meridional Quebec. The project, funded by the minist&#232;re de la S&#233;curit&#233; publique du Qu&#233;bec (Quebec ministry in charge of public security), consists in developing a diagnostic tool and methods to assess the risk and impacts of flooding. Tools under development are intended to be used primarily by policy makers.&#160;</p><p>The project relies on water level data based on the hydrological regimes of nearly 25,000 km of rivers, on high-precision digital terrain models, and on a detailed database of building footprints and characterizations. It also relies on 24h and 48h forecasts of maximum flow for the subject rivers. The developed tools integrate large data sets and heterogeneous data sources and produce insightful metrics on the physical extent and costs of floods and on their impact on the population. The software also provides precise information about each building affected by rising water, including an estimated cost of the damages and impact on inhabitants.&#160;&#160;</p>
-
In cold regions, ice jams frequently result in severe flooding due to a rapid rise in water levels upstream of the jam. Sudden floods resulting from ice jams threaten human safety and cause damage to properties and infrastructure. Hence, ice-jam prediction tools can give an early warning to increase response time and minimize the possible damages. However, ice-jam prediction has always been a challenge as there is no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological conditions happen, a few hours to a few days before the event. Ice-jam prediction can be addressed as a binary multivariate time-series classification. Deep learning techniques have been widely used for time-series classification in many fields such as finance, engineering, weather forecasting, and medicine. In this research, we successfully applied convolutional neural networks (CNN), long short-term memory (LSTM), and combined convolutional–long short-term memory (CNN-LSTM) networks to predict the formation of ice jams in 150 rivers in the province of Quebec (Canada). We also employed machine learning methods including support vector machine (SVM), k-nearest neighbors classifier (KNN), decision tree, and multilayer perceptron (MLP) for this purpose. The hydro-meteorological variables (e.g., temperature, precipitation, and snow depth) along with the corresponding jam or no-jam events are used as model inputs. Ten percent of the data were excluded from the model and set aside for testing, and 100 reshuffling and splitting iterations were applied to 80 % of the remaining data for training and 20 % for validation. The developed deep learning models achieved improvements in performance in comparison to the developed machine learning models. The results show that the CNN-LSTM model yields the best results in the validation and testing with F1 scores of 0.82 and 0.92, respectively. This demonstrates that CNN and LSTM models are complementary, and a combination of both further improves classification.
-
Floods, intensified by climate change, pose major challenges for flood zone management in Quebec. This report addresses these issues through two complementary aspects: a historical analysis of the evolution of flood zone management in Quebec and the projected impact of the cartographic and regulatory overhaul, as well as an exploration of the imaginary surrounding the flood-prone territory of the city of Lachute, which has faced recurrent floods for decades and yet continues to be inhabited. The historical analysis reveals that the major floods of 1974, 1976, 2017, and 2019 marked significant turning points in Quebec’s risk management, particularly by highlighting gaps in the regulatory framework and flood zone mapping. The adoption of the Act Respecting Land Use Planning and Development (LAU) in 1979 and the Policy for the Protection of Shorelines, Littorals, and Floodplains (PPRLPI) in 1987 represented a shift toward a preventive approach. However, inconsistencies, insufficient updates to maps, and uneven enforcement of standards have hindered their effectiveness. The catastrophic floods of 2017 and 2019 triggered a regulatory overhaul, a modernization of mapping, and measures to strengthen community resilience. In 2022, a transitional regime came into effect to tighten the regulation of activities in flood zones, pending the adoption of a risk-based management framework. However, to this day, the regulatory perimeters proposed in the modernization project fail to account for the adaptive capacities deployed by communities to live with water, thus providing a biased interpretation of flood risk. The second part explores the social and cultural representations associated with Lachute’s flood-prone territory. It highlights the complex relationships that have developed between residents and the Rivière du Nord through successive flooding episodes and the adaptation strategies implemented to cope, particularly by those who have repeatedly experienced flooding. These residents have come to live with overflow events and to (co)exist with water, challenging the persistent notion that flood-prone areas are inherently dangerous. While local strategies are sometimes innovative, they remain constrained by a regulatory framework that disregards the human experience of the territory and the specific ways in which people inhabit exposed areas to learn to manage flood risks. In summary, this report underscores the urgency of a territorialized, risk-based approach to modernizing flood zone management. It also highlights the need to look beyond cartographic boundaries and better integrate human and cultural dimensions into planning policies, as illustrated in the case of Lachute, to more accurately reflect the true level of risk. These reflections aim to promote more coherent, sustainable, and acceptable management, planning, and development of exposed territories in response to the growing challenges posed by climate change.
-
Earthquakes pose potentially substantial risks to residents in the Western Quebec seismic zone of eastern Canada, where Ottawa and Montreal are located. In eastern Canada, the majority of houses are not constructed to modern seismic standards and most homeowners do not purchase earthquake insurance for their homes. If a devastating earthquake strikes, homeowners would be left unprotected financially. To quantify financial risks to homeowners in the Western Quebec seismic zone, regional earthquake catastrophe models are developed by incorporating up-to-date public information on hazard, exposure and vulnerability. The developed catastrophe models can quantify the expected and upper-tail financial seismic risks by considering a comprehensive list of possible seismic events as well as critical earthquake scenarios based on the latest geological data in the region. The results indicate that regional seismic losses could reach several tens of billions of dollars if a moderate-to-large earthquake occurs near urban centres in the region, such as Montreal and Ottawa. The regional seismic loss estimates produced in this study are useful for informing earthquake risk management strategies, including earthquake insurance and disaster relief policies.
-
RÉSUMÉ : Les relocalisations de populations et les démolitions de bâtiments sont des moyens pour réduire les risques associés aux inondations, dont ceux pour la santé humaine. Au Québec, l’usage de ces mesures pourrait s’accroître avec les changements climatiques. En Chaudière-Appalaches, au moins 404 bâtiments ont été démolis à Sainte-Marie et 88 à Scott après les inondations de 2019. L’expérience de démolition de domiciles post-inondation est toutefois peu documentée au Québec et encore moins selon le point de vue des personnes touchées, particulièrement chez les hommes. Ce mémoire présente les résultats d’une étude ayant documenté cette expérience auprès de treize hommes propriétaires d’un domicile dans la MRC Nouvelle-Beauce à partir d'entretiens semi-dirigés (méthode photo-élicitation) et d’un groupe de discussion. Cette étude repose sur l’expérience clinique de l’étudiante-chercheuse qui a constaté la présence de détresse chez la population masculine touchée par ce phénomène et sur la littérature scientifique qui démontre une plus faible propension à l’usage de services psychosociaux et de santé chez les hommes. À partir d’une analyse thématique inspirée du cadre théorique « Psychological Processes That Influence Adaptation to and Coping With Climate Change » de Reser et Swim et d’une perspective écosystémique, quatre nouvelles phases ont été dégagées soient : l’inondation, les démarches administratives, la démolition et la relocalisation. Chacune est caractérisée par des besoins et des impacts psychosociaux systémiques, l’usage de stratégies adaptatives spécifiques et des moments critiques pour la santé et le bien-être des hommes. Les résultats suggèrent que des impacts et besoins individuels et collectifs peuvent se cumuler et se prolonger dans le temps comme des manifestations anxio-dépressives ou traumatiques, de la détresse, une désaffiliation sociale ainsi qu’une modification de projets de vie. Une réduction de l’exposition aux inondations et une augmentation du bien-être et de la sécurité ressortent également. La proactivité, les pensées axées sur l’autonomie et le recours au soutien informel sont apparues comme des stratégies aidantes comparativement au repli sur soi et au surinvestissement dans le travail. Les résultats permettent d’exposer des pistes de réflexion et d’action favorisant le bien-être des hommes et d’autres pertinentes pour le travail social. Parmi celles-ci se trouvent d’encourager les hommes touchés par la démolition de leur domicile post-inondation à s’investir dans leur nouveau milieu de vie pour favoriser son appropriation et sa personnalisation ainsi que des recommandations pour le travail social de prendre en compte le genre dans la compréhension des problèmes socioenvironnementaux. -- Mot(s) clé(s) en français : Inondation, chez-soi, hommes, changements climatiques, travail social, désastre, besoins psychosociaux, adaptation, mesures d’atténuation du risque, événements météorologiques extrêmes. -- ABSTRACT : Population relocation and building demolition are ways of reducing the risks associated with flooding, including those to human health. In Quebec, the use of these measures could increase with climate change. In Chaudière-Appalaches, at least 404 buildings were demolished in Sainte-Marie and 88 in Scott after the 2019 floods. However, the experience of post-flood home demolition is poorly documented in Quebec, and even less so from the perspective of those affected, specifically men. This memoir presents the results of a study that documented this experience with thirteen male homeowners in the Nouvelle-Beauce MRC using semi-directed interviews (photo-elicitation method) and a focus group. This study is based on the student-researcher's clinical experience of distress among the male population affected by this phenomenon, and on scientific literature demonstrating a lower propensity to use psychosocial and health services among men. Based on a thematic analysis inspired by the Reser and Swim’s theoretical framework, the Psychological Processes That Influence Adaptation to and Coping With Climate Change, and an ecosystem perspective, four new phases were identified: flooding, administrative procedures, demolition and relocation. Each is characterized by systemic psychosocial needs and impacts, the use of specific adaptive strategies and critical moments for men's health and well-being. The results suggest that individual and collective needs and impacts can accumulate and extend over time, such as anxio-depressive or traumatic manifestations, distress, social disaffiliation and changes in life plans. A reduction in exposure to flooding and an increase in well-being and safety also stand out. Proactivity, autonomy-oriented thinking and reliance on informal support emerged as helpful strategies compared to withdrawal and over-investment in work. The results provide food for thought and action to promote men's well-being, and others relevant to social work. These include encouraging men affected by the demolition of their post-flood home to get involved in their new living environment to promote its appropriation and personalization and taking gender into account in understanding socioenvironmental problems. -- Mot(s) clé(s) en anglais : Flooding, home, men, climate change, social work, disaster, psychosocial needs, adaptation, risk mitigation measures, extreme weather events.
-
Au Québec, les conditions printanières extraordinaires de 2017 et 2019 ont incité le gouvernement provincial à commander une mise à jour des cartes des zones inondables. La plupart des cartes existantes ne reflètent pas adéquatement l’aménagement actuel du territoire, ni l’aléa associé. Généralement, pour la cartographie, les modèles hydrodynamiques tel que HEC-RAS sont utilisés, mais ces outils nécessitent une expertise significative, des données hydrométriques et des relevés bathymétriques à haute résolution. Étant donnée la nécessité de mettre à jour ces cartes tout en réduisant les coûts financiers associés, des méthodes conceptuelles simplifiées ont été développées. Ces approches, y compris l’approche géomatique HAND (Height above the nearest drainage), qui reposent uniquement sur un modèle numérique d’élévation (MNE), sont de plus en plus utilisées. HAND permet de calculer la hauteur d’eau nécessaire pour inonder chaque pixel du MNE selon la différence entre son élévation et celle du pixel du cours d’eau dans lequel il se déverse. Les informations sur la géométrie hydraulique dérivées par HAND ainsi que l’application de l’équation de Manning permettent la construction d’une courbe de tarage synthétique (CTS) pour chaque tronçon de rivière homogène. Dans la littérature, cette méthode a été appliquée pour établir une cartographie de la zone inondable de première instance de grands fleuves aux États-Unis avec un taux de correspondance de 90% par rapport à l’utilisation de HEC-RAS. Elle n’a toutefois pas été appliquée sur de petits bassins versants, car ceux-ci engendrent des défis méthodologiques substantiels. Ce projet s’attaque à ces défis sur deux bassins versants Québécois, ceux des rivières à la Raquette et Delisle. Les conditions frontières des modèles sont dérivées d’un traitement statistique empirique des séries de débits simulés avec le modèle hydrologique HYDROTEL. Étant donnée l’absence de stations météorologiques sur le territoire à l’étude, des chroniques du système Canadien d’Analyse de la précipitation (CaPA) ont été utilisées pour cette modélisation hydrologique. Les résultats de ce projet pointent vers des performances satisfaisantes de l’approche géomatique HAND-CTS en comparaison avec le modèle hydrodynamique HEC-RAS (1D/2D et 2D au complet), avec des taux de correspondance entre les étendues des inondations supérieurs à 60 % pour les bassins versants de Delisle et à la Raquette. Les comparaisons étaient effectuées sur une gamme de débit allant d’un débit de période de retour de 2 ans jusqu’à un débit de plus de 350 ans. On notera que l’application sur la rivière à la Raquette a été développée dans les règles de l’art, incluant un processus de calage développé dans le cadre d’un projet de maitrise en sciences de l’eau connexe à ce mémoire, relativement à la longueur du tronçon, le calage vertical de la CTS en considérant la hauteur d’eau présente dans le cours d’eau lors du relevé LiDAR et sa précision verticale. Les résultats ont montré que le coefficient de précision globale le plus bas était de 98 % pour un débit de 350 ans, avec une précision de plus que 99 % pour les autres périodes de retour, ce qui représente une très bonne performance du modèle. Et par ailleurs, le coefficient de Kappa conditionnel humide variait entre 58 % et 28 %. Alors, que pour la rivière Delisle, l’application se veut naïve, c’est-à-dire sans calage préalable de la méthode HANDCTS. La précision globale a varié entre 83 % et 96 %, ce qui est considéré comme "très approprié" et une variation du coefficient Kappa conditionnel humide de 35,2 à 64,3 %. Alors que pour une différence d’élévations d'eau entre les élévations de référence et simulées, la performance était quantifiée par un RMSE qui variait pour les périodes de retour de 100 ans et de 350 ans respectivement de 4,5 m et de 7,1 m. Enfin, la distribution spatiale des différences d’élévations montre une distribution gaussienne avec une moyenne qui est à peu près égale à 0 où la plupart des erreurs se situent entre -0,34 m et 1,1 m La cartographie des zones inondables dérivée de HAND-CTS présente encore certains défis associés notamment à la présence d’infrastructures urbaines complexes (ex. : ponceaux, ponts et seuils) dont l’influence hydraulique n’est pas considérée. Dans le contexte où l’ensemble du Québec (529 000 km²) dispose d’une couverture LiDAR, les résultats de ce mémoire permettront de mieux comprendre les sources d’incertitude associées à la méthode HAND-CTS tout en démontrant son potentiel pour les bassins versants dépourvus de données bathymétriques et hydrométéorologiques. <br /><br />The 2017 and 2019 extraordinary spring conditions prompted the Quebec government to update flood risk maps, as most of them do not adequately reflect current land use and associated hazard. Generally, hydrodynamic models such as HEC-RAS are used for flood mapping, but they require significant expertise, hydrometric data, and high-resolution bathymetric surveys. Given the need to update these maps while reducing the associated financial costs, simplified conceptual methods have been developed over the last decade. These methods are increasingly used, including HAND (height above the nearest drainage), which relies on a Digital Elevation Model (DEM) to delineate the inundation area given the water height in a river segment. Furthermore, the river geometry derived from HAND data and the application of Manning’s equation allow for the construction of a synthetic rating curve (SRC) for each homogeneous river segment. In the scientific literature, this framework has been applied to produce first-instance floodplain mapping of large rivers. For example, in the Continental United States 90% match rates were achieved when compared to the use of HEC-RAS. However, this framework has not been validated for small watersheds, as substantial methodological challenges are anticipated. This project addresses these underlying challenges in two Quebec watersheds, the à la Raquette and Delisle watersheds. The boundary conditions of the HECRAS models were derived from an empirical statistical treatment of flow time series simulated by HYDROTEL, a hydrological model, using Canadian Precipitation Analysis Product (CaPA) time series. The results of this project point towards satisfactory performances, with match rates greater than 60 % for both watersheds. It should be noted that the application on the Delisle River is naive, that is without prior calibration of the HAND-SRC method. The overall accuracy ranged from 83.4 % to 96.2 % while the water surface elevation difference was quantified by an RMSE that was for the 100-year and 350-year return periods of 4.5 m and 7.1 m respectively and where most errors are between -0.34 m and 1.1 m representing a very good model comparing to similar studies. For à la Raquette, the application showed an overall accuracy coefficient of 98 % for a 350-year flow, with an accuracy of over 99 % for other return periods. The mapping of flood risk areas using HAND-SRC still faces certain challenges, notably the presence of complex urban infrastructures (e.g., culverts, bridges, and weirs) whose hydraulic influences are not considered by this geomatic approach. Given that most of Quebec (529,000 km²) topography has been digitized using LiDAR data, the results conveyed in this MSc thesis will allow for a better understanding of the sources of uncertainty associated with the application of the HAND-SRC method while demonstrating its potential for watersheds lacking hydrometeorological and high-resolution bathymetric data.
-
Extreme flood events continue to be one of the most threatening natural disasters around the world due to their pronounced social, environmental and economic impacts. Changes in the magnitude and frequency of floods have been documented during the last years, and it is expected that a changing climate will continue to affect their occurrence. Therefore, understanding the impacts of climate change through hydroclimatic simulations has become essential to prepare adaptation strategies for the future. However, the confidence in flood projections is still low due to the considerable uncertainties associated with their simulations, and the complexity of local features influencing these events. The main objective of this doctoral thesis is thus to improve our understanding of the modelling uncertainties associated with the generation of flood projections as well as evaluating strategies to reduce these uncertainties to increase our confidence in flood simulations. To address the main objective, this project aimed at (1) quantifying the uncertainty contributions of different elements involved in the modelling chain used to produce flood projections and, (2) evaluating the effects of different strategies to reduce the uncertainties associated with climate and hydrological models in regions with diverse hydroclimatic conditions. A total of 96 basins located in Quebec (basins dominated by snow-related processes) and Mexico (basins dominated by rain-related processes), covering a wide range of climatic and hydrological regimes were included in the study. The first stage consisted in decomposing the uncertainty contributions of four main uncertainty sources involved in the generation of flood projections: (1) climate models, (2) post-processing methods, (3) hydrological models, and (4) probability distributions used in flood frequency analyses. A variance decomposition method allowed quantifying and ranking the influence of each uncertainty source on floods over the two regions studied and by seasons. The results showed that the uncertainty contributions of each source vary over the different regions and seasons. Regions and seasons dominated by rain showed climate models as the main uncertainty source, while those dominated by snowmelt showed hydrological models as the main uncertainty contributor. These findings not only show the dangers of relying on single climate and hydrological models, but also underline the importance of regional uncertainty analyses. The second stage of this research project focused in evaluating strategies to reduce the uncertainties arising from hydrological models on flood projections. This stage includes two steps: (1) the analysis of the reliability of hydrological model’s calibration under a changing climate and (2) the evaluation of the effects of weighting hydrological simulations on flood projections. To address the first part, different calibration strategies were tested and evaluated using five conceptual lumped hydrological models under contrasting climate conditions with datasets lengths varying from 2 up to 21 years. The results revealed that the climatic conditions of the calibration data have larger impacts on hydrological model’s performance than the lengths of the climate time series. Moreover, changes on precipitation generally showed greater impacts than changes in temperature across all the different basins. These results suggest that shorter calibration and validation periods that are more representative of possible changes in climatic conditions could be more appropriate for climate change impact studies. Following these findings, the effects of different weighting strategies based on the robustness of hydrological models (in contrasting climatic conditions) were assessed on flood projections of the different studied basins. Weighting the five hydrological models based on their robustness showed some improvements over the traditional equal-weighting approach, particularly over warmer and drier conditions. Moreover, the results showed that the difference between these approaches was more pronounced over flood projections, as contrasting flood magnitudes and climate change signals were observed between both approaches. Additional analyses performed over four selected basins using a semi-distributed and more physically-based hydrological model suggested that this type of models might have an added value when simulating low-flows, and high flows on small basins (of about 500 km2). These results highlight once again the importance of working with ensembles of hydrological models and presents the potential impacts of weighting hydrological models on climate change impact studies. The final stage of this study focused on evaluating the impacts of weighting climate simulations on flood projections. The different weighting strategies tested showed that weighting climate simulations can improve the mean hydrograph representation compared to the traditional model “democracy” approach. This improvement was mainly observed with a weighting approach proposed in this thesis that evaluates the skill of the seasonal simulated streamflow against observations. The results also revealed that weighting climate simulations based on their performance can: (1) impact the floods magnitudes, (2) impact the climate change signals, and (3) reduce the uncertainty spreads of the resulting flood projection. These effects were particularly clear over rain-dominated basins, where climate modelling uncertainty plays a main role. These finding emphasize the need to reconsider the traditional climate model democracy approach, especially when studying processes with higher levels of climatic uncertainty. Finally, the implications of the obtained results were discussed. This section puts the main findings into perspective and identifies different ways forward to keep improving the understanding of climate change impacts in hydrology and increasing our confidence on flood projections that are essential to guide adaptation strategies for the future.
-
Abstract Fluvial biogeomorphology has proven to be efficient in understanding the evolution of rivers in terms of vegetation succession and channel adjustment. The role of floods as the primary disturbance regime factor has been widely studied, and our knowledge of their effects on vegetation and channel adjustment has grown significantly in the last two decades. However, cold rivers experiencing ice dynamics (e.g., ice jams and mechanical breakups) as an additional disturbance regime have not yet been studied within a biogeomorphological scope. This study investigated the long‐term effects of ice dynamics on channel adjustments and vegetation trajectories in two rivers with different geomorphological behaviours, one laterally confined (Matapédia River) and one mobile (Petite‐Cascapédia River), in Quebec, Canada. Using dendrochronological analysis, historical data and aerial photographs from 1963 to 2016, this study reconstructed ice jam chronologies, characterized flood regimes and analysed vegetation and channel changes through a photointerpretation approach. The main findings of this study indicate that geomorphological impacts of mechanical ice breakups are not significant at the decadal and reach scales and that they might not be the primary factors of long‐term geomorphological control. However, results have shown that vegetation was more sensitive to ice dynamics. Reaches presenting frequent ice jams depicted high regression rates and turnovers even during years with very low floods, suggesting that ice dynamics significantly increase shear stress on plant patches. This study also highlights the high resiliency of both rivers to ice jam disturbances, with vegetation communities and channel forms recovering within a decade. With the uncertainties following the reach/corridor and decadal scales, future research should focus on long‐term monitoring and refined spatial scales to better understand the mechanisms behind the complex interactions among ice dynamics, vegetation and hydrogeomorphological processes in cold rivers.
-
Les changements climatiques anthropogéniques posent des défis énormes pour toutes les sociétés humaines. Ces défis majeurs mettront à l’épreuve les capacités d’adaptation des États et de ses institutions et des communautés partout dans le monde et devront se résoudre par un élan de solidarité humaine afin d’en atténuer les conséquences. Le Canada connaît déjà un réchauffement climatique important. Le pays a d’ailleurs récemment été touché par des événements climatiques extrêmes : des canicules, des feux de forêt, une sécheresse anormale et des inondations dont l’intensité est prévue d’augmenter avec les changements climatiques anthropogéniques. La province du Québec a quant à elle été touchée par de fortes inondations entre 2017 et 2019. L’objectif principal de la présente étude vise à discuter la manière dont le paradigme écosocial peut faire évoluer le travail social en tant que champ de savoir et d’intervention dans un contexte de changements climatiques. Cette étude s’est appuyée sur des données issues de groupes focus réalisés avec des intervenants suite aux inondations survenues au Québec (2017-2019). Notre analyse vise les interventions réalisées en contexte d’inondations, dans le sud de la province, mise en œuvre par le système de santé. Les données ont été collectées lors d’entrevues de groupe réalisées avec des intervenants psychosociaux et des gestionnaires de CI(U)SSS au courant des mois d’octobre et de novembre 2019. Les thèmes suivants ont émergé des analyses: les caractéristiques des inondations de 2019, les divergences d’opinions vis-à-vis des changements climatiques, l’aide et le soutien apportés durant les inondations et la participation citoyenne. J’insisterai également sur l’exacerbation possible des inégalités sociales dans ce contexte. D’autres thèmes se sont également révélés importants : l’engagement des intervenants psychosociaux, la participation et la décentralisation des décisions politiques. Enfin, mes réflexions porteront sur les conséquences sociales qu’entrainent les inondations et sur les types de pratiques sociales qui s’avèrent pertinentes à l’ère des changements climatiques et dans un contexte d’urgence.
-
Dans la dernière décennie, le Québec a été touché par plusieurs épisodes d’inondations majeures. C’est le cas des communautés riveraines de Pointe-Gatineau, frappées par des inondations historiques en 2017, 2019 et 2023. Depuis, le départ d’une grande partie des riverains de ce quartier socio-économiquement défavorisé et la destruction de plusieurs maisons laissent un grand vide. La présence de nombreux lots vacants amène de l’incertitude parmi les citoyen.nes qui sont resté.es, dans ce qui est considéré comme l’un des plus vieux quartiers de Gatineau (Conseil régional de l'environnement et du développement durable de l'Outaouais, 2021). Bien que ce domaine d’étude soit en émergence, on observe dans la littérature que l’attachement des individus à leur milieu suivant une ou des catastrophes exercerait une influence sur leur processus de rétablissement. Cette étude s’intéresse donc au processus de rétablissement d’individus provenant d’un quartier socioéconomiquement défavorisé qui ont vécu un cumul d’inondations, et au rôle de l’attachement au lieu dans ce processus. Cette recherche mobilise le cadre de désorientation et de réorientation proposé par Cox et Perry (2011) pour expliquer le processus de rétablissement d’individus dans un lieu modifié par un désastre. L’attachement au lieu est conceptualisé en fonction des dimensions recensées par Raymond et ses collègues (2010) et du sentiment d’être chez soi par Cox et Perry (2011). Quatorze personnes sinistrées qui ont vécu les inondations de 2017 et de 2019 dans le quartier de Pointe-Gatineau ont été rencontrées lors d’entrevues individuelles ou familiales en 2023. Parmi ce nombre, neuf demeurent encore dans les communautés riveraines de Pointe-Gatineau, alors que cinq ont quitté le quartier après les inondations de 2019. Les résultats révèlent que l’attachement au lieu joue un rôle prédominant dans le processus de rétablissement des sinistré.es. Selon les participant.es, l’attachement au lieu contribue à l’étape de désorientation ou favorise au contraire la réorientation. Les résultats soulignent en particulier que l’attachement que les participant.es ressentent envers leur domicile et leur environnement naturel et bâti constitue une motivation importante à vouloir demeurer dans le quartier inondable. Par contre, la recherche montre que des facteurs autres que la relation au lieu influencent également le processus de rétablissement, tels que la difficulté à naviguer dans les démarches administratives entourant les programmes d’indemnisation du gouvernement, le fait d’appartenir à un groupe vulnérable, le soutien social et certaines caractéristiques personnelles. De même, l’expérience de vivre plusieurs inondations amène des spécificités qui influencent elles aussi le processus de rétablissement. Les résultats dévoilent notamment des stratégies d’adaptation mises en place par les personnes participantes qui ont décidé de demeurer dans leur quartier. Les stratégies acquises avec l’expérience font en sorte qu’elles se sentent davantage préparées pour des éventuelles inondations. Cette recherche contribue à la littérature émergente qui s’intéresse au processus de rétablissement d’individus touchés par un cumul d’inondations et au rôle de l’attachement au lieu sur ce processus. Elle permet d’offrir des pistes de réflexion aux différents acteurs qui accompagnent les personnes sinistrées avant, pendant et après des inondations et propose des recommandations en ce sens.
-
This thesis examines the main socio-environmental relationships related to recurrent floodings in the Sainte-Anne River watershed by mobilizing the history of land use, local knowledge and risk management policies. From a political ecology perspective, these relationships are part of both social representations of nature, power dynamics associated with the appropriation of ressources and multiple temporalities. By also mobilizing the theoreticals frameworks of the anthropology of disasters and amphibian anthropology, this study allow to retrace step by step what “flood zone” is as a socially constructed space by the authorities, and go back to the source of the advent of “flood” as a catastrophic event, where rising waters have been part of the characteristics of these territories since the beginning of the sedentarization of its inhabitants. Based on 93 semi-directed interviews (76 residents and 17 institutions stakeholders) realized between February to October 2019, non-participant observation and documentary research in municipal and regional archives, this ethnography of the Sainte-Anne River watershed allows a unique incursion with Quebec riverside residents who live with recurrent rising waters. Through four case studies (Saint-Raymond, Saint-Alban, Saint-Casimir and Sainte-Anne-de-la-Pérade), historical contexts of occupation of the territory were documented and significant events were described by focusing on local residents adaptation strategies and anticipated management by institutional stakeholders. The result is a portrait, in a temporal perspective, of the relationship of cohabitation between residents and the river and its overflows. This cohabitation is characterized by tensions and paradoxes associated with different social representations of water and temporality that coexist within the actors, as well as changes in power relations towards the environment. Cette thèse examine les principaux rapports socio-environnementaux liés aux inondations récurrentes dans le bassin versant de la rivière Sainte-Anne en mobilisant l’histoire de l’occupation du territoire, les savoirs locaux et les politiques de gestion des risques. Dans une perspective d’écologie politique, ces rapports s’inscrivent à la fois dans les représentations sociales de la nature, les dynamiques de pouvoir associées à l’appropriation des ressources et des temporalités multiples. En puisant également dans les cadres théoriques de l’anthropologie des catastrophes et de l’anthropologie amphibienne, cette étude permet notamment de retracer pas à pas ce qu’est la « zone inondable » en tant qu’espace construit socialement par les autorités, et de remonter à la source de l’avènement de « l’inondation » comme étant un événement catastrophique, alors que la montée des eaux fait partie des caractéristiques de ces territoires depuis le début de la sédentarisation des habitants. Basée sur 93 entrevues semi-dirigées (76 riverains et 17 acteurs institutionnels) menées de février à octobre 2019, de l’observation non participante et une recherche documentaire dans les archives municipales et régionales, cette ethnographie du bassin versant de la rivière Sainte-Anne permet une incursion unique auprès de citoyens québécois qui vivent avec la montée récurrente des eaux. Pour quatre municipalités riveraines (Saint-Raymond, Saint-Alban, Saint-Casimir et Sainte-Anne-de-la-Pérade), les contextes historiques de l’occupation du territoire ont été documentés et les événements significatifs ont été décrits en focalisant sur les stratégies d’adaptation des résidents et la gestion menée par des acteurs institutionnels. En résulte un portrait, dans une perspective temporelle, de la relation de cohabitation entre les riverains et la rivière et ses débordements. Cette cohabitation est caractérisée par des tensions et des paradoxes associés aux différentes représentations sociales de l’eau et de la temporalité qui coexistent au sein des acteurs, ainsi qu’aux changements dans les rapports de pouvoir envers l’environnement.
-
Mathematical modelling is a well-accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost-effective way to make this assessment, the added value brought by landscape-specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were to: (i) present the adaptation of PHYSITEL (a GIS) to parameterize isolated and riparian wetlands; (ii) describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules) and the added-value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness-of-fit indicators (GOFIs) and fourteen water flow criteria (WFC). A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate that: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g., typology, location) on watershed hydrology.