Votre recherche
Résultats 20 ressources
-
The contemporary definition of integrated water resources management (IWRM) is introduced to promote a holistic approach in water engineering practices. IWRM deals with planning, design and operation of complex systems in order to control the quantity, quality, temporal and spatial distribution of water with the main objective of meeting human and ecological needs and providing protection from water related disasters. This paper examines the existing decision making support in IWRM practice, analyses the advantages and limitations of existing tools, and, as a result, suggests a generic multi-method modeling framework that has the main goal to capture all structural complexities of, and interactions within, a water resources system. Since the traditional tools do not provide sufficient support, this framework uses multi-method simulation technique to examine the codependence between water resources system and socioeconomic environment. Designed framework consists of (i) a spatial database, (ii) a traditional process-based model to represent the physical environment and changing conditions, and (iii) an agent-based spatially explicit model of socio-economic environment. The multi-agent model provides for building virtual complex systems composed of autonomous entities, which operate on local knowledge, possess limited abilities, affect and are affected by local environment, and thus, enact the desired global system behavior. Agent-based model is used in the presented work to analyze spatial dynamics of complex physical-social-economic-biologic systems. Based on the architecture of the generic multi-method modeling framework, an operational model for the Upper Thames River basin, Southwestern Ontario, Canada, is developed in cooperation with the local conservation authority. Six different experiments are designed by combining three climate and two socio-economic scenarios to analyze spatial dynamics of a complex physical-social-economic system of the Upper Thames River basin. Obtained results show strong dependence between changes in hydrologic regime, in this case surface runoff and groundwater recharge rates, and regional socio-economic activities.
-
Abstract This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.
-
Mathematical modelling is a well-accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost-effective way to make this assessment, the added value brought by landscape-specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were to: (i) present the adaptation of PHYSITEL (a GIS) to parameterize isolated and riparian wetlands; (ii) describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules) and the added-value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness-of-fit indicators (GOFIs) and fourteen water flow criteria (WFC). A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate that: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g., typology, location) on watershed hydrology.
-
ABSTRACTTwo modelling approaches are presented in this article for spatial and temporal analysis of water resources risk. Major sources of uncertainty in water resources management are spatial and temporal variability. Spatial variability occurs when values fluctuate with the location of an area and temporal variability occurs when values fluctuate with time. System dynamics (SD) simulation and hydrodynamic modelling are presented in this article as tools for modelling the dynamic characteristics of flood risk and its spatial variability. The first modelling framework presents SD simulation coupled with 3D fuzzy set theory. Whereas the second modelling framework presents hydrodynamic modelling coupled with 3D fuzzy set theory. The two integrated modelling frameworks are illustrated and compared using the Red River flood of 1997 (Manitoba, Canada) as a case study. For the 1997 Red River case study, SD simulation proved to be efficient modelling approach for capturing the feedback-based dynamic processes oc...
-
An urban heat island (UHI) is a relative measure defined as a metropolitan area that is warmer than the surrounding suburban or rural areas. The UHI nomenclature includes a surface urban heat island (SUHI) definition that describes the land surface temperature (LST) differences between urban and suburban areas. The complexity involved in selecting an urban core and external thermal reference for estimating the magnitude of a UHI led us to develop a new definition of SUHIs that excludes any rural comparison. The thermal reference of these newly defined surface intra-urban heat islands (SIUHIs) is based on various temperature thresholds above the spatial average of LSTs within the city’s administrative limits. A time series of images from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) from 1984 to 2011 was used to estimate the LST over the warm season in Montreal, Québec, Canada. Different SIUHI categories were analyzed in consideration of the global solar radiation (GSR) conditions that prevailed before each acquisition date of the Landsat images. The results show that the cumulative GSR observed 24 to 48 h prior to the satellite overpass is significantly linked with the occurrence of the highest SIUHI categories (thresholds of +3 to +7 °C above the mean spatial LST within Montreal city). The highest correlation (≈0.8) is obtained between a pixel-based temperature that is 6 °C hotter than the city’s mean LST (SIUHI + 6) after only 24 h of cumulative GSR. SIUHI + 6 can then be used as a thermal threshold that characterizes hotspots within the city. This identification approach can be viewed as a useful criterion or as an initial step toward the development of heat health watch and warning system (HHWWS), especially during the occurrence of severe heat spells across urban areas.
-
Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041–2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the “Rolland-Therrien” combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, QCSO, and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500 % increases in VD and 13 to 148 % increases in QCSO by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100 % by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed.
-
Floods have potentially devastating consequences on populations, industries and environmental systems. They often result from a combination of effects from meteorological, physiographic and anthropogenic natures. The analysis of flood hazards under a multivariate perspective is primordial to evaluate several of the combined factors. This study analyzes spring flood-causing mechanisms in terms of the occurrence, frequency, duration and intensity of precipitation as well as temperature events and their combinations previous to and during floods using frequency analysis as well as a proposed multivariate copula approach along with hydrometeorological indices. This research was initiated over the Richelieu River watershed (Quebec, Canada), with a particular emphasis on the 2011 spring flood, constituting one of the most damaging events over the last century for this region. Although some work has already been conducted to determine certain causes of this record flood, the use of multivariate statistical analysis of hydrologic and meteorological events has not yet been explored. This study proposes a multivariate flood risk model based on fully nested Archimedean Frank and Clayton copulas in a hydrometeorological context. Several combinations of the 2011 Richelieu River flood-causing meteorological factors are determined by estimating joint and conditional return periods with the application of the proposed model in a trivariate case. The effects of the frequency of daily frost/thaw episodes in winter, the cumulative total precipitation fallen between the months of November and March and the 90th percentile of rainfall in spring on peak flow and flood duration are quantified, as these combined factors represent relevant drivers of this 2011 Richelieu River record flood. Multiple plausible and physically founded flood-causing scenarios are also analyzed to quantify various risks of inundation.
-
Les bassins versants du Moyen‐Nord quebecois (49e au 55e parallele) se distinguent par leur climatologie et le pourcentage eleve de territoires couverts par des lacs et milieux humides (de l’ordre de 20 a 30 %) et, surtout, par leur importante contribution a la production electrique du Quebec; le complexe de la riviere La Grande generant environ 40% de l’electricite quebecoise. Dans le contexte de la gestion de la production d’electricite, Hydro‐Quebec Production fait la prevision des apports aux reservoirs de ce complexe a l’aide d’un modele hydrologique global. Par ailleurs, depuis les annees 1980, le milieu boreal quebecois a subi des hausses de temperature et de precipitation qui ont modifie le regime des apports aux reservoirs. Compte tenu de ces changements et des caracteristiques physiographiques des bassins boreaux, il a ete propose d’utiliser un modele hydrologique distribue a base physique pour examiner l’impact sur ces apports des projections climatiques produites par Ouranos. En l’occurrence le modele HYDROTEL dont la prise en mains est en train d’etre completee par Hydro‐Quebec Production. Le modele qui est maintenant convenablement cale pour un certain nombre de bassins repond aux attentes dans les bassins du sud du Quebec. Toutefois, pour les grands bassins du Nord comme ceux du Complexe La Grande, l’utilisation du modele requiert des travaux d’adaptations, entre autres, aux niveaux de la modelisation des milieux humides et de la desagregation spatiale des precipitations simulees par les modeles climatiques. Les objectifs generaux de ce projet etaient d’accroitre notre comprehension de l’hydrologie du moyen nord afin qu’elle soit bien representee dans HYDROTEL tout en tenant compte des incertitudes parametriques associees aux differentes equations gouvernant les processus physiques. Ces objectives ont ete declines en trois activites de travail : (AT1) modelisation des processus hydrologiques; (AT2) calage et analyses de sensibilite, d’identifiabilite et d’incertitudes des parametres de calage d’HYDROTEL; et (AT3) amelioration des plateformes informatiques HYDROTEL et PHYSITEL, ce dernier etant un SIG dedie a la construction des bases de donnees de modeles hydrologiques distribues. Pour Ouranos et Hydro‐Quebec les principales realisations issues de ce projet incluent : (i) le developpement d’une methode eprouvee de desagregation sous grille de la precipitation mesoechelle permettant d’evaluer a fine echelle spatiale l’impact des changements climatiques sur les precipitations; (ii) une meilleure comprehension de la dynamique des ecoulements, du stockage de l’eau et de l’evapotranspiration d’un petit bassin versant boreal incluant une grande une tourbiere minerotrophe aqualysee; (iii) l’evaluation du parametrage de la sublimation et la relocalisation de la neige dues au vent et l’identification du besoin d’inclure le rayonnement sous la canopee pour bien reproduire la crue avec un modele complexe de l'evolution du couvert nival; (iv) la detection de la quasi neutralite frequente (~76% du temps, majoritairement le jour) de l’atmosphere au‐dessus d’un milieu humide causee par une turbulence mecanique forte et une grande inertie thermique; conditions ayant permises le developpement d’un modele simple d’evapotranspiration des milieux humides base le transfert massique et la stabilite atmospherique; (v) le developpement d’un modele de rayonnement net base uniquement sur des donnees de temperatures journalieres (min, max) et une estimation des parametres permettant de valider l’utilisation de l’equation de Penman‐Monteith dans le nord quebecois; (vi) la hierarchisation des parametres de calage d’HYDROTEL selon la saison et le developpement d’une methode permettant d’evaluer l’incertitude sur les debits simules et d’identifier son importance durant la fonte et l’etiage estival; (vii) dans un contexte d’analyse frequentielle des debits simules, evaluation de l’incertitude parametrique par rapport a l’incertitude statistique, cette derniere dominant pour les periodes de retour superieures a cinq ans; (viii) a l’aide de PHYSITEL, la premiere discretisation du complexe de la riviere La Grande (136 648 km2) en six sousbassins (LG1, LG2, LG3, LG4, La Forge 1 & 2,et Caniapiscau) leur subdivision en versants permettant le calcul de crues maximales probables a l’aide d’HYDROTEL; et (ix) le developpement d’une version 64 bits d’HYDROTEL incluant de nouveaux modules de de calculs de la temperature du sol et des bilans hydriques des milieux humides et isoles. L'avancement de nos comprehensions de l'hydrologie des milieux humides et du milieu boreal en general a ete a la base du developpement des versions adaptees d'HYDROTEL et de PHYSITEL qui permettront a Hydro‐Quebec d'apprehender, avec une modelisation distribuee, l'impact des changements climatiques sur le complexe de la riviere La Grande. Ces logiciels sont transposables a l’ensemble du milieu boreal canadien. Une entente conclut, depuis 2005, entre l’INRS et Hydro‐Quebec (HQ) permet d’ailleurs une distribution commerciale des differentes versions d’HYDROTEL avec interfaces usagers de meme qu’une distribution communautaire du noyau de calcul. Cette synergie a permis de mettre en commun des ressources et des expertises qui facilitent les echanges scientifiques et techniques entre les concepteurs d’HYDROTEL, le Centre d’expertise hydrique du Quebec (CEHQ), HQ, l’IREQ (Institut de recherche en electricite du Quebec) et d’autres usagers (ex. : l’IMTA, Instituto Mexicano de Technologia del Agua). Au total, plus d’une quarantaine de licences ont ete distribuees tant pour des besoins d’enseignement (Universite de Sherbrooke) et de recherche (Universite Laval, UQTR, UQAC, IREQ, Ecole de Technologie Superieure, INRA de Montpellier, Environnement Canada, Agriculture et Agroalimentaire Canada), que des besoins de prevision hydrologique (IMTA, Ville de Quebec, Centre d’expertise hydrique du Quebec, HQ). La modularite informatique d’HYDROTEL se prete egalement bien a cette synergie car elle offre la possibilite de partager le savoir‐faire et, par l’entremise d’un site internet public (CodePlex), de mettre a la disponibilite de tous les nouvelles versions du noyau de calcul. Ces developpements ont permis a l’equipe de l’INRS‐ETE d’acquerir une reconnaissance internationale en modelisation hydrologique distribuee. En effet, HYDROTEL et PHYSITEL ont dans le passe ete identifie comme les outils a utiliser dans le cadre d’appels de proposition de projets de determination du potentiel hydroelectrique finances par la Banque Mondiale [World Bank, 2009].
-
Abstract. During the last decade, most European countries have produced hazard maps of natural hazards, but little is known about how to communicate these maps most efficiently to the public. In October 2011, Zurich's local authorities informed owners of buildings located in the urban flood hazard zone about potential flood damage, the probability of flood events and protection measures. The campaign was based on the assumptions that informing citizens increases their risk awareness and that citizens who are aware of risks are more likely to undertake actions to protect themselves and their property. This study is intended as a contribution to better understand the factors that influence flood risk preparedness, with a special focus on the effects of such a one-way risk communication strategy. We conducted a standardized mail survey of 1500 property owners in the hazard zones in Zurich (response rate main survey: 34 %). The questionnaire included items to measure respondents' risk awareness, risk preparedness, flood experience, information-seeking behaviour, knowledge about flood risk, evaluation of the information material, risk acceptance, attachment to the property and trust in local authorities. Data about the type of property and socio-demographic variables were also collected. Multivariate data analysis revealed that the average level of risk awareness and preparedness was low, but the results confirmed that the campaign had a statistically significant effect on the level of preparedness. The main influencing factors on the intention to prepare for a flood were the extent to which respondents evaluated the information material positively as well as their risk awareness. Respondents who had never taken any previous interest in floods were less likely to read the material. For future campaigns, we therefore recommend repeated communication that is tailored to the information needs of the target population.
-
Abstract. While disaster studies researchers usually view risk as a function of hazard, exposure, and vulnerability, few studies have systematically examined the relationships among the various physical and socioeconomic determinants underlying disasters, and fewer have done so through seismic risk analysis. In the context of the 1999 Chi-Chi earthquake in Taiwan, this study constructs three statistical models to test different determinants that affect disaster fatality at the village level, including seismic hazard, exposure of population and fragile buildings, and demographic and socioeconomic vulnerability. The Poisson regression model is used to estimate the impact of these factors on fatalities. Research results indicate that although all of the determinants have an impact on seismic fatality, some indicators of vulnerability, such as gender ratio, percentages of young and aged population, income and its standard deviation, are the important determinants deteriorating seismic risk. These findings have strong social implications for policy interventions to mitigate such disasters.
-
Abstract A leading challenge in measuring social vulnerability to hazards is for output metrics to better reflect the context in which vulnerability occurs. Through a meta-analysis of 67 flood disaster case studies (1997–2013), this paper profiles the leading drivers of social vulnerability to floods. The results identify demographic characteristics, socioeconomic status, and health as the leading empirical drivers of social vulnerability to damaging flood events. However, risk perception and coping capacity also featured prominently in the case studies, yet these factors tend to be poorly reflected in many social vulnerability indicators. The influence of social vulnerability drivers varied considerably by disaster stage and national setting, highlighting the importance of context in understanding social vulnerability precursors, processes, and outcomes. To help tailor quantitative indicators of social vulnerability to flood contexts, the article concludes with recommendations concerning temporal context, measurability, and indicator interrelationships.
-
Abstract A disproportionate share of the global economic and human losses caused by environmental shocks is borne by people in the developing nations. The mountain region of Hindu-Kush Himalaya (HKH) in South Asia is threatened by numerous flooding events annually. An efficient disaster risk reduction often needs to rest upon location-based synoptic view of vulnerability. Resolving this deficit improves the ability to take risk reduction measures in a cost-effective way, and in doing so, strengthens the resilience of societies to flooding disasters. The central aim of this research is to identify the vulnerable locations across HKH boundary from the perspective of reported history of economic and human impacts due to occurrence of flooding disasters. A detailed analysis indicates a very high spatial heterogeneity in flooding disaster occurrence in the past 6 decades. The most recent decade reported highest number of disasters and greater spatial coverage as compared to the earlier decades. The data indicates that, in general, economic impacts of flooding disasters were notably higher in Pakistan, Afghanistan and Nepal. On the other hand, vulnerability scenarios with respect to human impacts were diverse for different countries. In terms of morbidity and mortality, Bangladesh, Pakistan, Bhutan and India were detected to be most susceptible to human impacts. Although Bhutan had seen lesser number of flooding disasters, higher population living within disaster prone region make them vulnerable. In summary, complex interactions between natural and socio-economic conditions play a dominant role to define and characterize the type and magnitude of vulnerability of HKH countries to disaster occurrence and their economic and human impacts.
-
The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whereas the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is still lacking. Due to this knowledge gap, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. We show for the first time (to our knowledge) that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We find that rising per-capita income coincided with a global decline in vulnerability between 1980 and 2010, which is reflected in decreasing mortality and losses as a share of the people and gross domestic product exposed to inundation. The results also demonstrate that vulnerability levels in low- and high-income countries have been converging, due to a relatively strong trend of vulnerability reduction in developing countries. Finally, we present projections of flood losses and fatalities under 100 individual scenario and model combinations, and three possible global vulnerability scenarios. The projections emphasize that materialized flood risk largely results from human behavior and that future risk increases can be largely contained using effective disaster risk reduction strategies.
-
Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to adapt and respond to floods, which in turn largely depends on their social vulnerability. This study shows how a joint assessment of hazard, exposure and social vulnerability provides valuable information for the evaluation of FRM strategies. The adopted methodology uses data on hazard and exposure combined with a social vulnerability index. The relevance of this state-of-the-art approach taken is exemplified in a case-study of Rotterdam, the Netherlands. The results show that not only a substantial share of the population can be defined as socially vulnerable, but also that the population is very heterogeneous, which is often ignored in traditional flood risk management studies. It is concluded that FRM measures, such as individual mitigation, evacuation or flood insurance coverage should not be applied homogenously across large areas, but instead should be tailored to local characteristics based on the socioeconomic characteristics of individual households and neighborhoods.