UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Axes du RIISQ
  • 3 - aspects biopsychosociaux
Langue de la ressource
  • Anglais

Résultats 513 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 26
  • Page 1 de 26
Résumés
  • Arefi, F., Tavan, A., Moradi, S. M., Daneshi, S., & Farahmandnia, H. (2025). Identifying challenges and future directions of flood hazards mitigation strategies in health facilities: a systematic literature review. BMC Emergency Medicine, 25(1), 174. https://doi.org/10.1186/s12873-025-01339-0
    Consulter sur bmcemergmed.biomedcentral.com
  • Sotomayor, M. R., Campos, A. G. H., Filho, A. R. P. D. P., Goulart, A. C. A., Vacario, B. G. L., Orrutéa, J. F. G., Valentim, J. M. B. D. M., Fagundes, T. R., Gaboardi, S. C., & Panis, C. (2025). Climate changes and cancer risk: Key factors and emerging health threats. Hygiene and Environmental Health Advances, 16, 100145. https://doi.org/10.1016/j.heha.2025.100145
    Consulter sur linkinghub.elsevier.com
  • Arefi, F., Tavan, A., Moradi, S. M., Daneshi, S., & Farahmandnia, H. (2025). Identifying challenges and future directions of flood hazards mitigation strategies in health facilities: a systematic literature review. BMC Emergency Medicine, 25(1), 174. https://doi.org/10.1186/s12873-025-01339-0
    Consulter sur bmcemergmed.biomedcentral.com
  • Arefi, F., Tavan, A., Moradi, S. M., Daneshi, S., & Farahmandnia, H. (2025). Identifying challenges and future directions of flood hazards mitigation strategies in health facilities: a systematic literature review. BMC Emergency Medicine, 25(1), 174. https://doi.org/10.1186/s12873-025-01339-0
    Consulter sur bmcemergmed.biomedcentral.com
  • Sotomayor, M. R., Campos, A. G. H., Filho, A. R. P. D. P., Goulart, A. C. A., Vacario, B. G. L., Orrutéa, J. F. G., Valentim, J. M. B. D. M., Fagundes, T. R., Gaboardi, S. C., & Panis, C. (2025). Climate changes and cancer risk: Key factors and emerging health threats. Hygiene and Environmental Health Advances, 16, 100145. https://doi.org/10.1016/j.heha.2025.100145
    Consulter sur linkinghub.elsevier.com
  • Arefi, F., Tavan, A., Moradi, S. M., Daneshi, S., & Farahmandnia, H. (2025). Identifying challenges and future directions of flood hazards mitigation strategies in health facilities: a systematic literature review. BMC Emergency Medicine, 25(1), 174. https://doi.org/10.1186/s12873-025-01339-0
    Consulter sur bmcemergmed.biomedcentral.com
  • Shen, S. V. (2025). The 2021 Henan flood increased citizen demand for government-led climate change adaptation in China. Communications Earth & Environment, 6(1), 730. https://doi.org/10.1038/s43247-025-02745-9
    Consulter sur www.nature.com
  • Hill, B., Marjoribanks, T., Moore, H., Bosher, L., & Gussy, M. (2025). Market-based instruments to fund nature-based solutions for flood risk management can disproportionately benefit affluent areas. Communications Earth & Environment, 6(1), 714. https://doi.org/10.1038/s43247-025-02706-2

    Abstract Market-based instruments, including competitive tenders, are central to funding global environmental restoration and management projects. Recently, tenders have been utilised to fund Nature-based Solutions schemes for Natural Flood Management, with the explicit purpose of achieving co-benefits; flood management and reducing inequities. While multiple studies consider the efficacy of Nature-based Solutions for tackling inequities, no prior research has quantified whether the resource allocation for these projects has been conducted equitably. We analyse two national natural flood management programmes funded through competitive tenders in England to explore who benefits by considering the characteristics of projects, including socio-economic, geographical (e.g. rurality) and flood risk dynamics. Our results suggest that inequity occurs at both the application and funding stages of Nature-based Solutions projects for flood risk management. This reflects wider international challenges of using market-based instruments for environmental resource allocation. Competitive tenders have the potential to undermine the equitable benefits of Nature-based Solutions.

    Consulter sur www.nature.com
  • Liwur, S. B., Tagnan, J. N., & Asamoah, P. S. (2025). Urban growth or urban risk? Unraveling the flood paradox in Kumasi (Ghana) through the lens of natural factors and spatial decision modeling. Journal of African Earth Sciences, 232, 105814. https://doi.org/10.1016/j.jafrearsci.2025.105814
    Consulter sur linkinghub.elsevier.com
  • Zhang, J., Chu, C., & Wang, P. (2025). Research on Extreme Precipitation Risk Considering Physical-social-environmental Attributes. Journal of Disaster Prevention and Mitigation Engineering, 45(4), 736–744. https://doi.org/10.13409/j.cnki.jdpme.20241220001

    This study aims to conduct a grid-scale extreme precipitation risk assessment in Xuanwu District, Nanjing, so as to fill the gaps in existing indicator systems and improve the precision of risk characterization. By integrating physical, social, and environmental indicators, a risk assessment framework was constructed to comprehensively represent the characteristics of extreme precipitation risk. This study applied the entropy weight method to calculate indicator weights, combined with ArcGIS technology and the K-means clustering algorithm, to analyze the spatial distribution characteristics of risk under a 100-year extreme precipitation scenario and to identify key influencing indicators across different risk levels. The results showed that extreme precipitation risk levels in Xuanwu District exhibited significant spatial heterogeneity, with an overall distribution pattern of low risk in the central area and high risk in the surrounding areas. The influence mechanisms of key indicators showed tiered response characteristics: the low-risk areas were mainly controlled by the submerged areas of urban and rural, industrial and mining, and residential lands, water body area, soil erosion level, and normalized difference vegetation index (NDVI). The medium-risk areas were influenced by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, emergency service response time to disaster-affected areas, soil erosion level, and NDVI. The high-risk areas were jointly dominated by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, and NDVI. The extremely high-risk areas were driven by three factors—the submerged areas of forest land, emergency service response time to disaster-affected areas, and the proportion of the largest patch to the landscape area. This study improves the indicator system for extreme precipitation risk assessment and clarifies the tiered response patterns of risk-driving indicators, providing a scientific basis for developing differentiated flood control strategies in Xuanwu District while offering important theoretical support for improving regional flood disaster resilience. © 2025 Editorial Office of Journal of Disaster Prevention and Mitigation Engineering. All rights reserved.

  • Javidi Sabbaghian, R., Fereshtehpour, M., & Goli Hosseinabad, M. R. (2025). Integrated hydrologic-economic modeling for urban flood risk mitigation using SWMM, HEC-RAS, and HAZUS: a case study of the Bronx river watershed, NYC. Sustainable Water Resources Management, 11(5). https://doi.org/10.1007/s40899-025-01263-y

    Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Soomro, S., Wei, H., Boota, M. W., Soomro, N.-E., Faisal, M., Nazli, S., sarwari, S., Shi, X., Hu, C., Guo, J., & Li, Y. (2025). River basin urban flood resilience: A multi-dimensional framework for risk mitigation to adaptive management and ecosystem protection under changing climate. Ecological Informatics, 91. https://doi.org/10.1016/j.ecoinf.2025.103412

    Study region: This study aims at the Kunhar River Basin, Pakistan, that has been facing repeated flood occurrences on a recurring basis. As the flood susceptibility of this area is high, its topographic complexity demands correct predictive modeling for strategic flood planning. Study focus: We developed a system of flood susceptibility mapping based on Geographic Information Systems (GIS), Principal Component Analysis (PCA), and Support Vector Machine (SVM) classification. Four kernel functions were applied, and the highest-performing was the Radial Basis Function (SVM-RBF). The model was validated and trained using historical flood inventories, morphometric parameters, and hydrologic variables, and feature dimensionality was reduced via PCA for increased efficiency. New hydrological insights: The SVM-RBF model recorded an AUC of 0.8341, 88.02% success, 84.97% predictability, 0.89 Kappa value, and F1-score of 0.86, all of which indicated high predictability. Error analysis yielded a PBIAS of +2.14%, indicating negligible overestimation bias but within limits acceptable in hydrological modeling. The results support the superiority of the SVM-RBF approach compared to conventional bivariate methods in modeling flood susceptibility over the complex terrain of mountains. The results can be applied in guiding evidence-based flood mitigation, land-use planning, and adaptive management in the Kunhar River Basin. © 2025 The Author(s)

  • Wang, S., & Bi, X. (2025). Integrative strategies for urban flood resilience and risk: A meta-analysis of policy, infrastructural, and ecosystem-based interventions. Physics and Chemistry of the Earth, 141. https://doi.org/10.1016/j.pce.2025.104077

    Urban flooding, intensified by climate change and rapid urbanization, demands robust and operationally effective resilience strategies. However, empirical evidence on the comparative effectiveness of such strategies remains limited. This study presents the first meta-analytic synthesis evaluating urban flood resilience interventions across institutional, infrastructural, and socio-ecological domains. By synthesizing data from 29 peer-reviewed studies (2000–2024), this study applies standardized effect sizes (Cohen's d) and meta-regression models to assess the effectiveness of different strategies. Results reveal a substantial overall effect (pooled d = 2.96, 95 % CI: [1.92, 3.99]) with high heterogeneity (I2 = 93.8 %). Institutional mechanisms, such as policy coordination, regulatory frameworks, and risk governance, consistently show the strongest and most statistically significant impacts (d ≈ 2.96). Low Impact Development (LID) demonstrates limited, non-significant effects (d ≈ 0.08). The study introduces a novel hierarchical resilience framework spanning different dimensions and establishes an evidence-based typology of urban flood resilience strategies. These findings highlight the importance of integrated, multi-level governance and context-specific planning in enhancing urban flood resilience. The study findings provides critical insights for implementing resilience strategies in flood-prone urban areas, and support the formulation of adaptive and sustainable urban policies. © 2025

  • Lhamidi, K., & El Khattabi, J. (2025). Enhancing the hydrological performance of Low Impact Development infrastructure through earthworm activity and vegetation dynamics for mitigating urban flooding. Ecological Engineering, 221. https://doi.org/10.1016/j.ecoleng.2025.107786

    Urban soil sealing and anthropogenic activities, combined with the increasing intensity of rainfall due to climate change, is a threat to urban environments, exacerbating flood risks. To assess these challenges, Low Impact Development strategies, based on Nature-based solutions, are a key solution to mitigate urban flooding. To enhance the hydrological performance of LID infrastructure, and to meet the guideline requirements related to emptying time, specifically in low hydraulic conductivity soils, earthworm activity and vegetation dynamics can play a major role. The ETAGEP experimental site was built to study to address those challenges. 12 swales (10 m2 infiltration area for each swale) were monitored to evaluate the impact of earthworm activity (A. caliginosa and L. terrestris) and vegetation dynamics (Rye Grass, Petasites hybridus and Salix alba) to enhance the hydrological performance. The infiltration rate of the swales evolved in a differentiated manner, with an increase of 16.1 % to 310.8 % and draining times decrease of 13.9 % to 75.7, depending on initial soil hydro-physical properties and the impervious areas of the catchment which influence runoff volumes. The simulations on SWMM software showed similar results, with an enhancement of the hydraulic conductivity of N6 swales (60 m2 total catchment area) increasing from 18 mm h−1 to 25 mm h−1, and a reduction of drawdown time by 24.4 % (N6) and 20.8 % (N11–110 m2 active surface). A simulated storm event of 44.8 mm resulted in an overflow of 2.12 m3 for the N11 swale configuration, while no overflow was observed for N6. These results highlight the ecosystem services of earthworms for a sustainable stormwater management in urban environments, enhancing the hydrological performance of LID infrastructures and reducing therefore flood risks and limiting pressure on drainage network. © 2025 The Author(s)

  • Mitali, P., Patel, N., Modi, K., & Patel, S. (2026). Predictive Modeling and Strategic Planning for Urban Flood Risk Mitigation. Commun. Comput. Info. Sci., 2619 CCIS, 188–199. https://doi.org/10.1007/978-3-032-00350-8_14

    Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

  • Lin, X., Yang, K., & Zhang, R. (2025). Analysis of rainfall disaster-causing factors weight and hazard assessment of non-typhoon rainstorms in Fujian Province. Torrential Rain and Disasters, 44(4), 526–534. https://doi.org/10.12406/byzh.2024-129

    Conducting an importance analysis of rainfall disaster-causing factors and hazard assessment is crucial for preventing rainstorm disasters. Based on precipitation observation data from 66 national meteorological stations from 1981 to 2020 and 1,038 provincial meteorological stations from 2010 to 2020 in Fujian Province, the correlation coefficient weighting method was used to calculate and compare the weight coefficients of the rainfall disaster-causing factors of non-typhoon rainstorms in 5 seasons (early spring, rainy season, summer, autumn and winter) and typhoon rainstorms in 3 periods (early, common and late). Then, the comprehensive index method was employed to conduct the hazard assessment and validation of non-typhoon rainstorms. The results are as follows: (1) The spatial extent of heavy precipitation is the primary factor in causing disasters for non-typhoon rainstorms in all seasons and for late typhoon rainstorms. Short-duration intense precipitation is the major factor causing disasters in summer non-typhoon rainstorms, early typhoon rainstorms, and common typhoon rainstorms. (2) The results of the disaster risk assessment of non-typhoon rainstorms show that the hazard of the non-typhoon rainstorm event from June 14 to 26, 2010 was the highest. There is an overall spatial distribution indicating a pattern of being high in the east and west while low in the central area, with two contiguous high and very high risk areas in the northwest inland and southeast coastal areas, respectively. (3) The spatial distributions of disaster risk for three historical non-typhoon rainstorm events from 2010 to 2020 obtained from the non-typhoon rainstorm disaster assessment model are basically consistent with the disaster situation. © Editorial Office of Torrential Rain and Disasters. OA under CC BY−NC−ND 4.0.

  • Zhang, T., Wu, K., Wang, X., Li, X., Li, L., & Chen, L. (2025). Impact of Land Use Patterns on Flood Risk in the Chang-Zhu-Tan Urban Agglomeration, China. Remote Sensing, 17(16). https://doi.org/10.3390/rs17162889

    Flood risk assessment is an effective tool for disaster prevention and mitigation. As land use is a key factor influencing flood disasters, studying the impact of different land use patterns on flood risk is crucial. This study evaluates flood risk in the Chang-Zhu-Tan (CZT) urban agglomeration by selecting 17 socioeconomic and natural environmental factors within a risk assessment framework encompassing hazard, exposure, vulnerability, and resilience. Additionally, the Patch-Generating Land Use Simulation (PLUS) and multilayer perceptron (MLP)/Bayesian network (BN) models were coupled to predict flood risks under three future land use scenarios: natural development, urban construction, and ecological protection. This integrated modeling framework combines MLP’s high-precision nonlinear fitting with BN’s probabilistic inference, effectively mitigating prediction uncertainty in traditional single-model approaches while preserving predictive accuracy and enhancing causal interpretability. The results indicate that high-risk flood zones are predominantly concentrated along the Xiang River, while medium-high- and medium-risk areas are mainly distributed on the periphery of high-risk zones, exhibiting a gradient decline. Low-risk areas are scattered in mountainous regions far from socioeconomic activities. Simulating future land use using the PLUS model with a Kappa coefficient of 0.78 and an overall accuracy of 0.87. Under all future scenarios, cropland decreases while construction land increases. Forestland decreases in all scenarios except for ecological protection, where it expands. In future risk predictions, the MLP model achieved a high accuracy of 97.83%, while the BN model reached 87.14%. Both models consistently indicated that the flood risk was minimized under the ecological protection scenario and maximized under the urban construction scenario. Therefore, adopting ecological protection measures can effectively mitigate flood risks, offering valuable guidance for future disaster prevention and mitigation strategies. © 2025 by the authors.

  • Le, T. T., Vo, T. Q., & Kim, J. (2025). An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth. Mathematics, 13(16). https://doi.org/10.3390/math13162617

    This study presents a novel bivariate-output deep learning framework based on LeNet-5 for the simultaneous prediction of urban flood susceptibility and inundation depth in Seoul, South Korea. Unlike previous studies that relied on single-output models, the proposed approach jointly learns classification and regression targets through a shared feature extraction structure, enhancing consistency and generalization. Among six tested architectures, the Le5SD_CBAM model—integrating a Convolutional Block Attention Module (CBAM)—achieved the best performance, with 83% accuracy, an Area Under the ROC Curve (AUC) of 0.91 for flood susceptibility classification, and a mean absolute error (MAE) of 0.12 m and root mean squared error (RMSE) of 0.18 m for depth estimation. The model’s spatial predictions aligned well with hydrological principles and past flood records, accurately identifying low-lying flood-prone zones and capturing localized inundation patterns influenced by infrastructure and micro-topography. Importantly, it detected spatial mismatches between susceptibility and depth, demonstrating the benefit of joint modeling. Variable importance analysis highlighted elevation as the dominant predictor, while distances to roads, rivers, and drainage systems were also key contributors. In contrast, secondary terrain attributes had limited influence, indicating that urban infrastructure has significantly altered natural flood flow dynamics. Although the model lacks dynamic forcings such as rainfall and upstream inflows, it remains a valuable tool for flood risk mapping in data-scarce settings. The bivariate-output framework improves computational efficiency and internal coherence compared to separate single-task models, supporting its integration into urban flood management and planning systems. © 2025 by the authors.

  • Yan, H., Guo, K., & Guan, M. (2025). Enhanced Urban Flood Hazard Assessment by Stochastic Event Catalog. Water Resources Research, 61(8). https://doi.org/10.1029/2025WR040459

    Assessing flood severity in urban areas is a pivotal task for urban resilience and climate adaptation. However, the lack of in situ measurements hinders direct spatial estimation of flood return periods, while conventional assumptions about rainstorm-flood consistency introduce significant uncertainties due to rainstorm spatiotemporal variability (STV). This study proposes a novel framework that utilizes multivariate frequency analysis of flood variables at the street level (50 m) through a stochastic rainstorm-flood event catalog. The rainstorm events in the catalog are generated by a random field generator and resampled to match the joint distribution of STV variables consistent with radar observations. Urban flood processes are then simulated by a hydrodynamic model for flood hazard assessment (FHA). We applied the framework to a rural-urban watershed using 3,000 cases randomly resampled from the catalog. Results reveal that inundation characteristics respond more rapidly to increasing rainfall intensities than downstream flood peaks, particularly during the early stages of rainstorms. The complex joint probability structures of rainstorm severity and STV variables obscure the mechanistic control of individual factors on flood response. A significant underestimation of street-level flood hazards occurs when assuming the same return periods (RPs) as those for watershed-level hazards. The inconsistency between rainstorm and flood severities results in widespread underestimation of street-level flood hazards in upstream regions, while traditional storm designs that neglect STV lead to overestimations in mid- and downstream areas. This study highlights the complex probabilistic behavior of spatially distributed flood hazards across multiple scales, enhancing the insights and methodologies for street-level FHA. © 2025 The Author(s).

  • Batmanathan, N. M., Pereira, J. J., Shah, A. A., Muhamad, N., & Sian, L. C. (2025). Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia. Journal of Marine Science and Engineering, 13(8). https://doi.org/10.3390/jmse13081539

    This study uses remote sensing data to assess susceptibility to hazards, which are then validated to model impact scenarios for land subsidence and coastal flooding in the Integrated Coastal Zone Management (ICZM) of Selangor, Malaysia, to support decision-making in urban planning and land management. Land subsidence and coastal floods affect a major proportion of the population in the ICZM, with subsidence being significant contributing factors, but information on the extent of susceptible areas, monitoring, and wide-area coverage is limited. Land subsidence distribution is demarcated using Interferometric Synthetic Aperture Radar (InSAR) time-series data (2015–2022), and integrated with coastal flood susceptibility derived from Analytic Hierarchy Process (AHP)-based weights to model impacts on land cover. Results indicate maximum subsidence rates of 46 mm/year (descending orbit) and 61 mm/year (ascending orbit); reflecting a gradual increase in subsidence trends with an average rate of 13 mm/year. In the worst-case scenario, within the ICZM area of 2262 km2, nearly 12% of the total built-up land cover with the highest population density is exposed to land subsidence, while exposure to coastal floods is relatively larger, covering nearly 34% of the built-up area. Almost 27% of the built-up area is exposed to the combined effects of both land subsidence and coastal floods, under present sea level conditions, with increasing risks of coastal floods over 2040, 2050 and 2100, due to both combinations. This research prioritizes areas for further study and provides a scientific foundation for resilience strategies aimed at ensuring sustainable coastal development within the ICZM. © 2025 by the authors.

  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 26
  • Page 1 de 26
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-10-29 06 h 30 (UTC)

Explorer

Axes du RIISQ

  • 3 - aspects biopsychosociaux
  • 1 - aléas, vulnérabilités et exposition (361)
  • 2 - enjeux de gestion et de gouvernance (172)
  • 4 - réduction des vulnérabilités (187)
  • 5 - aide à la décision, à l’adaptation et à la résilience (243)

Enjeux majeurs

  • Inégalités et événements extrêmes (94)
  • Risques systémiques (77)
  • Prévision, projection et modélisation (74)

Lieux

  • Canada (102)
  • Québec (province) (46)
  • États-Unis (33)
  • Europe (31)

Secteurs et disciplines

  • Nature et Technologie (294)
  • Société et Culture (214)
  • Santé (195)

Types d'événements extrêmes

  • Inondations et crues (297)
  • Évènements liés au froid (neige, glace) (188)
  • Sécheresses et canicules (21)
  • Feux de forêts (7)

Types d'inondations

  • Fluviales (75)
  • Submersion côtière (19)
  • Par embâcle (15)
  • Pluviales (7)

Type de ressource

  • Article de colloque (2)
  • Article de journal (1)
  • Article de revue (475)
  • Chapitre de livre (7)
  • Livre (5)
  • Prépublication (2)
  • Rapport (8)
  • Thèse (13)

Année de publication

  • Entre 1900 et 1999 (7)
    • Entre 1970 et 1979 (3)
      • 1971 (1)
      • 1975 (1)
      • 1977 (1)
    • Entre 1980 et 1989 (1)
      • 1989 (1)
    • Entre 1990 et 1999 (3)
      • 1994 (1)
      • 1995 (1)
      • 1996 (1)
  • Entre 2000 et 2025 (506)
    • Entre 2000 et 2009 (17)
      • 2000 (3)
      • 2001 (1)
      • 2002 (4)
      • 2003 (3)
      • 2006 (1)
      • 2007 (3)
      • 2008 (2)
    • Entre 2010 et 2019 (148)
      • 2010 (4)
      • 2011 (1)
      • 2012 (5)
      • 2013 (4)
      • 2014 (3)
      • 2015 (10)
      • 2016 (6)
      • 2017 (10)
      • 2018 (52)
      • 2019 (53)
    • Entre 2020 et 2025 (341)
      • 2020 (53)
      • 2021 (44)
      • 2022 (44)
      • 2023 (54)
      • 2024 (40)
      • 2025 (102)
      • 2026 (4)

Langue de la ressource

  • Anglais

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web