Votre recherche
Résultats 2 ressources
-
Abstract Worldwide, there has been an increase in the presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs). The objective of this study is to validate the use of in situ probes for the detection and management of cyanobacterial breakthrough in high and low-risk DWTPs. In situ phycocyanin YSI EXO2 probes were devised for remote control and data logging to monitor the cyanobacteria in raw, clarified, filtered, and treated water in three full-scale DWTPs. An additional probe was installed inside the sludge holding tank to measure the water quality of the surface of the sludge storage tank in a high-risk DWTP. Simultaneous grab samplings were carried out for taxonomic cell counts and toxin analysis. A total of 23, 9, and 4 field visits were conducted at the three DWTPs. Phycocyanin readings showed a 93-fold fluctuation within 24 h in the raw water of the high cyanobacterial risk plant, with higher phycocyanin levels during the afternoon period. These data provide new information on the limitations of weekly or daily grab sampling. Also, different moving averages for the phycocyanin probe readings can be used to improve the interpretation of phycocyanin signal trends. The in situ probe successfully detected high cyanobacterial biovolumes entering the clarification process in the high-risk plant. Grab sampling results revealed high cyanobacterial biovolumes in the sludge for both high and low-risk plants.
-
Health-related concerns about cyanobacteria-laden sludge of drinking water treatment plants (DWTPs) have been raised in the past few years. Microscopic taxonomy, shotgun metagenomic sequencing, and microcystin (MC) measurement were applied to study the fate of cyanobacteria and cyanotoxins after controlled sludge storage (stagnation) in the dark in a full-scale drinking water treatment plant within 7 to 38 days. For four out of eight dates, cyanobacterial cell growth was observed by total taxonomic cell counts during sludge stagnation. The highest observed cell growth was 96% after 16 days of stagnation. Cell growth was dominated by potential MC producers such as Microcystis, Aphanocapsa, Chroococcus, and Dolichospermum. Shotgun metagenomic sequencing unveiled that stagnation stress shifts the cyanobacterial communities from the stress-sensitive Nostocales (e.g., Dolichospermum) order towards less compromised orders and potential MC producers such as Chroococcales (e.g., Microcystis) and Synechococcales (e.g., Synechococcus). The relative increase of cyanotoxin producers presents a health challenge when the supernatant of the stored sludge is recycled to the head of the DWTP or discharged into the source. These findings emphasize the importance of a strategy to manage cyanobacteria-laden sludge and suggest practical approaches should be adopted to control health/environmental impacts of cyanobacteria and cyanotoxins in sludge.