Votre recherche
Résultats 2 ressources
-
A framework is proposed using multi-stream phycocyanin probe readings to manage cyanobacterial risks at the source water and across the drinking water treatment processes. , In situ phycocyanin (PC) probes have been deployed as a cost-effective and efficient way to monitor cyanobacterial (CB) abundance in drinking water sources and to identify periods of potential risk at drinking water treatment plants (DWTPs). Monitoring CB removal efficacies in near real-time by sequentially using a single probe for multiple streams across the treatment plant provides a more useful assessment of CB risk breakthrough in treated water. Removal efficacies were measured in three DWTPs using integrated mass fluxes estimated from PC readings and grab sample total CB biovolume estimations in raw, clarified, filtered, and treated water. Selective CB species removal during the treatment processes was also evaluated. In addition, relationships between physio-chemical parameters (turbidity, pH, dissolved oxygen, conductivity, chlorophyll-a and temperature) and PC across the treatment processes were investigated. Finally, a framework to use in situ multi-stream PC monitoring, gathering data across the treatment chain, is proposed to manage risks of CB cells breakthrough in treated water. Estimates of 2 hour moving average PC metrics are proposed to provide short term alert in raw water and establish periods of treatment vulnerability or dysfunction, while daily mean PC values can be used to estimate total and process specific log removals to justify treatment adjustments. Benefits and limitations of the tested in situ probes for the application of alert levels are discussed, and key knowledge gaps for future research and guidance are identified.
-
Abstract Worldwide, there has been an increase in the presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs). The objective of this study is to validate the use of in situ probes for the detection and management of cyanobacterial breakthrough in high and low-risk DWTPs. In situ phycocyanin YSI EXO2 probes were devised for remote control and data logging to monitor the cyanobacteria in raw, clarified, filtered, and treated water in three full-scale DWTPs. An additional probe was installed inside the sludge holding tank to measure the water quality of the surface of the sludge storage tank in a high-risk DWTP. Simultaneous grab samplings were carried out for taxonomic cell counts and toxin analysis. A total of 23, 9, and 4 field visits were conducted at the three DWTPs. Phycocyanin readings showed a 93-fold fluctuation within 24 h in the raw water of the high cyanobacterial risk plant, with higher phycocyanin levels during the afternoon period. These data provide new information on the limitations of weekly or daily grab sampling. Also, different moving averages for the phycocyanin probe readings can be used to improve the interpretation of phycocyanin signal trends. The in situ probe successfully detected high cyanobacterial biovolumes entering the clarification process in the high-risk plant. Grab sampling results revealed high cyanobacterial biovolumes in the sludge for both high and low-risk plants.