Votre recherche
Résultats 99 ressources
-
Les politiques québécoises de prévention des risques liés aux inondations ont été sujettes à débat ces dernières années, avec une remise en cause du modèle centralisé et uniforme à travers le Québec, pour une approche plus intégrée. Celle-ci fait notamment la promotion de mesures axées sur la vulnérabilité et d’une participation plus active des acteurs territoriaux. On en sait toutefois très peu sur les déclinaisons locales de l’approche intégrée dans le contexte québécois. Ce mémoire propose d’interroger les différentes approches locales de la prévention et de soulever les enjeux qu’elles posent du point de vue des autorités qui y participent. L’étude se penche sur le cas des territoires concernés par les inondations du lac des Deux Montagnes (Région hydrographique de l'Outaouais et de Montréal). Le cadre d’analyse met de l’avant l’approche des instruments d’action publique pour comprendre leur appropriation par les acteurs locaux et une approche pragmatique qui consiste à centrer notre regard sur les pratiques et les stratégies de réduction des risques d’inondation. La recherche s’appuie sur trois sources de données : une analyse documentaire des régimes provinciaux de régulation des risques d’inondation, un recensement des pratiques de prévention déployées par les autorités locales concernées par les inondations du lac des Deux Montagnes et une série de 15 entretiens réalisés avec les personnes travaillant au sein de ces différentes autorités. Le cas illustre la difficulté et le faible engagement de prévenir les risques autrement que par l’approche de réduction de l’exposition aux risques imposée par la Politique de protection des rives, du littoral et des plaines inondables (PPRLPI). Toutefois, après les inondations de 2017 et de 2019, des approches alternatives propres aux contextes territoriaux ont été envisagées par différentes organisations. Celles-ci devraient davantage être documentées et mises en débat afin d’envisager un régime provincial de la gestion des risques plus flexible et ouvert à leur coexistence. <br /><br /> Uniformed and centralized model of Quebec's flood prevention policies have been recently debated. Integrated approach to flood risk prevention is now put forward, which focus more on vulnerability and foster an active participation of local authorities. Local declinations of the approach are relatively unknown in Quebec. This study presents different local approaches to flood risk prevention and raise issues they pose from the perspective of local authorities involved. It is based on the authority’s concerns by Lac des Deux Montagnes flooding (Outaouais and Montreal hydrographic region). Combining a political sociology approach to policy instruments and a pragmatic approach, we focus on risk regulation regimes, practices and risk reduction strategies. Three sources of data were used: an analysis of flood risk regulation regimes, an inventory of prevention practices deployed by local authorities and 15 interviews conducted with professionals among these authorities. Results show the difficulty and low commitment to implement local distinct approaches apart from prohibiting and discouraging exposure to flood risk enforced by the Protection Policy for Lakeshores, Riverbanks, Littoral Zones and Floodplains. However, after the floods of 2017 and 2019, alternative strategies specific to different territorial contexts were considered. These should be better documented and debated in order to consider a more flexible and coexistence provincial policy.
-
The potential impacts of floods are of significant concern to our modern society raising the need to identify and quantify all the uncertainties that can impact their simulations. Climate simulations at finer spatial resolutions are expected to bring more confidence in these hydrological simulations. However, the impact of the increasing spatial resolutions of climate simulations on floods simulations has to be evaluated. To address this issue, this paper assesses the sensitivity of summer–fall flood simulations to the Canadian Regional Climate Model (CRCM) grid resolution. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim reanalysis at 0.44°, 0.22° and 0.11° resolutions are analysed at a daily time step for the 1981–2010 period. Raw CRCM5 precipitation and temperature outputs are used as inputs in the simple lumped conceptual hydrological model MOHYSE to simulate streamflows over 50 Quebec (Canada) basins. Summer–fall flooding is analysed by estimating four flood indicators: the 2-year, 5-year, 10-year and 20-year return periods from the CRCM5-driven streamflows. The results show systematic impacts of spatial resolution on CRCM5 outputs and seasonal flood simulations. Floods simulated with coarser climate datasets present smaller peak discharges than those simulated with the finer climate outputs. Smaller catchments show larger sensitivity to spatial resolution as more detail can be obtained from the finer grids. Overall, this work contributes to understanding the sensitivity of streamflow modelling to the climate model’s resolution, highlighting yet another uncertainty source to consider in hydrological climate change impact studies.
-
Soil moisture is a key variable in Earth systems, controlling the exchange of water and energy between land and atmosphere. Thus, understanding its spatiotemporal distribution and variability is important. Environment and Climate Change Canada (ECCC) has developed a new land surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS land surface scheme features sophisticated parameterizations of hydrological processes, including water transport through the soil. It has been shown to provide more accurate simulations of the temporal and spatial distribution of soil moisture compared to the current operational land surface scheme. Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, we simulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme over an experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps were produced between May and November 2015. Simulated soil moisture values were compared with estimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture and Agri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic Aperture Radar (SAR) imagery. Statistical analysis of the results showed an overall promising performance of the SVS land surface scheme in simulating soil moisture values at high resolution scale. Investigation of the SVS output was conducted both independently of the soil texture, and as a function of the soil texture. The SVS model tends to perform slightly better over coarser textured soils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulated SVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. The Root Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113 over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. The unbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore, results show an Index of Agreement (IA) between the simulated and the derived soil moisture always higher than 0.90.
-
Abstract The snow melt from the High Atlas represents a crucial water resource for crop irrigation in the semiarid regions of Morocco. Recent studies have used assimilation of snow cover area data from high‐resolution optical sensors to compute the snow water equivalent and snow melt in other mountain regions. These techniques however require large model ensembles, and therefore it is a challenge to determine the adequate model resolution that yields accurate results with reasonable computation time. Here we study the sensitivity of an energy balance model to the resolution of the model grid for a pilot catchment in the High Atlas. We used a time series of 8‐m resolution snow cover area maps with an average revisit time of 7.5 days to evaluate the model results. The digital elevation model was generated from Pléiades stereo images and resampled from 8 to 30, 90, 250, 500, and 1,000 m. The results indicate that the model performs well from 8 to 250 m but the agreement with observations drops at 500 m. This is because significant features of the topography were too smoothed out to properly characterize the spatial variability of meteorological forcing, including solar radiation. We conclude that a resolution of 250 m might be sufficient in this area. This result is consistent with the shape of the semivariogram of the topographic slope, suggesting that this semivariogram analysis could be used to transpose our conclusion to other study regions. , Key Points A distributed energy balance snow model is applied in the High Atlas for the first time The model performance decreases at resolution coarser than 250 m This result is consistent with the semivariogram of the topographic slope
-
La résilience, cette capacité d’une ville ou d’un environnement à maintenir sa structure, à s’organiser, apprendre et s’adapter aux chocs et stress, participe au mouvement de responsabilisation accrue du citoyen dans la protection contre les risques naturels. Si les inondations sont un phénomène récurrent à Montréal depuis la création même de la ville, les citoyens n’y sont encore que peu préparés comme le démontre l’ampleur des dommages causés par les inondations du printemps de 2017. Depuis le début du 21e siècle, les agences internationales et les États cherchent à sensibiliser le citoyen afin de susciter une action de sa part. On suppose alors que le citoyen informé aura ainsi une perception accrue des risques, conduisant au comportement de protection. Ce lien entre information, perception et comportement n’est pourtant pas évident. En réalité, la littérature montre que le comportement dépend d’une multiplicité de facteurs tels que l’expérience, la fréquence du risque ainsi qu’une évaluation par la personne de l’efficacité des mesures de protection, de leur coût face à une évaluation de la probabilité de la menace. Le mémoire vise à répondre à la question de recherche suivante : comment inciter les individus à adopter des mesures de protection contre les inondations à Montréal ? Une enquête auprès de 237 citoyens de quatre secteurs de l’agglomération touchés par les inondations printanières de 2017 met en lumière un ensemble d’obstacles à l’adoption des mesures de protection contre les inondations aujourd’hui analysés grâce au Protective Action Decision Model de Lindell et Perry (2012). Ainsi, dans le cas de Montréal, le manque d’action relève à la fois d’un manque d’information et de connaissances sur les origines du risque et les mesures de prévention, de la perception d’inefficacité des mesures comme la trousse 72 heures, d’une perception d’incapacité à mettre en place soi-même les mesures de prévention, et d’un coût important en ressources de ces dernières. Le dernier élément est l’incertitude de ce type de risque et l’incapacité à prévoir avec précision le prochain événement de crue, qui, combiné à un sentiment de responsabilité élevé des autorités à assurer la protection, implique un manque d’urgence à agir. Face à ces constats et après une étude du cas de la Nouvelle Orléans aux États-Unis, une réflexion est proposée sur les moyens à mettre en place pour inciter les citoyens à adopter ces mesures, comprenant sensibilisation mais aussi des moyens coercitifs et incitatifs.
-
Abstract Background Climate change (CC) adaptation is considered a priority for Caribbean Small Islands Developing States (SIDS), as these territories and communities are considered particularly vulnerable to climate-related events. The primary health care (PHC) system is an important actor in contributing to climate change adaptation. However, knowledge on how PHC is prepared for CC in Caribbean SIDS is very limited. The objective of this paper is to discuss health adaptation to climate change focusing on the PHC system. Methods We explored the perspectives of PHC professionals in Dominica on climate change. Focus group discussions (FGDs) were conducted in each of the seven health districts in Dominica, a Caribbean SIDS, between November 2021 and January 2022. The semi-structured interview guide was based on the Essential Public Health Functions: assessment, access to health care services, policy development and resource allocation. Data coding was organized accordingly. Results Findings suggest that health care providers perceive climate change as contributing to an increase in NCDs and mental health problems. Climate-related events create barriers to care and exacerbate the chronic deficiencies within the health system, especially in the absence of high-level policy support. Healthcare providers need to take a holistic view of health and act accordingly in terms of disease prevention and health promotion, epidemiological surveillance, and ensuring the widest possible access to health care, with a particular focus on the ecological and social determinants of vulnerability. Conclusion The Primary Health Care system should be a key actor in designing and operationalizing adaptation and transformative resilience. The Essential Public Health Functions should integrate social and climate and ecological determinants of health to guide primary care activities to protect the health of communities. This indicates a need for improved research on the linkages between climate events and health outcomes, surveillance, and development of plans that are guided by contextual knowledge in the SIDS.
-
Aim: The aim of the study was to investigate the health effect on and adaptation of the elderly affected by floods in the Lat Krabang District, Bangkok, Thailand in 2011.Methods: A cross-sectional descriptive study was conducted. Data were collected from 290 elderly participants who were affected by the floods using questionnaires.Results: The elderly participants had previous experience with flooding, but the massive flooding in 2011 was the most severe compared to any other experiences in the past. Physical health effects included muscle pain (35.2%), athlete’s foot (28.3%), and skin rash (23.1%). The psychological health effects (24.3%) encountered included insomnia, constant stress and tension, attention deficit, and discontentment. Most elderly (89.3%) decided not to relocate thinking they could still live at home, but they were concerned about the safety of their property. In regards to preparation for the flood, they prepared consumer goods, medication, and emergency kits. In addition, they kept abreast with news on television and public announcements in the community. They also helped clear the drainage system and prepared contact information of children, relatives, and government offices in case they needed assistance. Finally, to reduce possible damage to the property, they moved their belongings to high places, built sandbag walls, raised the house level, and prepared a water pump.Conclusion: The 2011 Thailand floods had adverse effects on physical and psychological health of the elderly people. To ensure better management for this vulnerable group, plans to respond to possible disasters need to be devised by relevant agencies to reduce flood-related health impacts.
-
Abstract Characterizing and identification of flood‐susceptible areas can be a solution to mitigate the damages and fatality rate. This study proposes a novel hybrid MCDM framework to assess flood susceptibility in large ungauged watersheds dealing with data scarcity issues. The proposed method examines the interdependencies and causal relationships between various criteria affecting the flooding procedure using the DEcision‐MAking Trial and Evaluation Laboratory (DEMATEL). Moreover, since experts' opinions contain uncertainty, the fuzzy logic is integrated with DEMATEL to overcome this shortcoming. Then, the local weights of criteria were estimated using the Best–Worst Method (BWM) to enhance the pairwise comparisons process. Final criteria weights were obtained using Fuzzy DEMATEL and BWM results in Analytical Network Process (ANP) super‐matrix. Finally, the criteria were distributed spatially using the Complex Proportional Assessment of Alternatives (COPRAS) method based on obtained weights. The proposed method was compared with different approaches such as Fuzzy‐DEMATEL ANP, BWM, and AHP using several statistical measures. We concluded that the novel hybrid proposed method outperformed other approaches based on our results. Moreover, by overlaying classified maps with the historical flood events locations, it was concluded that 85.96% of flooded areas were classified as “high” and “very high.”
-
Coastal socio-ecological systems are complex adaptive systems with nonlinear changing properties and multi-scale dynamics. They are influenced by unpredictable coastal hazards accentuated by the effects of climate change, and they can quickly be altered if critical thresholds are crossed. Additional pressures come from coastal activities and development, both of which attracting stakeholders with different perspectives and interests. While coastal defence measures (CDMs) have been implemented to mitigate coastal hazards for centuries, a lack of knowledge and tools available to make informed decision has led to coastal managers favouring the choice of seawalls or rock armours with little consideration for socio-ecological systems features, and stakeholders’ priorities. Though it is not currently widely applied in coastal zone management, multicriteria decision analysis (MCDA) is a tool that can be useful to facilitate decision making. PROMETHEE, an outranking method, was chosen to support the multicriteria decision analysis for the evaluation of CDMs in the context of four study sites characterized by distinct environmental features. The aim was to determine the relevance and benefits of a MCDA by integrating coastal zone stakeholders in a participatory decision-making process in order to select CDMs that are better adapted to the whole socio-ecological system. First, in a series of five workshops, stakeholders were asked to identify and weigh criteria that were relevant to their local conditions. Second and third, CDMs were evaluated in relation to each criterion within the local context, then, hierarchized. Initial results show that vegetation came first in three of the four sites, while rock armour ranked first in the fourth site. A post-evaluation of the participatory process indicated that the weighting phase is an effective way to integrate local knowledge into the decision-making process, but the identification of criteria could be streamlined by the presentation of a predefined list from which participants could make a selection. This would ensure criteria that are standardized, and in a format that is compatible with the MCDA. Coupled with a participatory process MCDA proved to be a flexible methodology that can synthetize multiple aspects of the problem, and contribute in a meaningful way to the coastal engineering and management decision-making process.