Votre recherche
Résultats 3 ressources
-
Adaptation to climate change is a challenge that is complex and involves increasing risk. Efforts to manage these risks involve many decision-makers, conflicting values, competing objectives and methodologies, multiple alternative options, uncertain outcomes, and debatable probabilities. Adaptation occurs at multiple levels in a complex decision environment and is generally evaluated as better–worse, not right–wrong, based on multiple criteria. Identifying the best adaptation response is difficult. Risk management techniques help to overcome these problems. Here, risk management is presented as a decision-making framework that assists in the selection of optimal strategies (according to various criteria) using a systems approach that has been well defined and generally accepted in public decision-making. In the context of adapting to climate change, the risk management process offers a framework for identifying, assessing, and prioritizing climate-related risks and developing appropriate adaptation responses. The theoretical discussion is illustrated with an example from Canada. It includes (a) the assessment of climate change-caused flood risk to the municipal infrastructure for the City of London, Ontario, Canada, and (b) analysis of adaptation options for management of the risk in one of the watersheds within the City of London – Dingman Creek.
-
In recent years, geospatial data (e.g. remote sensing imagery), and other relevant ancillary datasets (e.g. land use land cover, climate conditions) have been utilized through sophisticated algorithms to produce global population datasets. With a handful of such datasets, their performances and skill in flood exposure assessment have not been explored. This study proposes a comprehensive framework to understand the dynamics and differences in population flood exposure over Canada by employing four global population datasets alongside the census data from Statistics Canada as the reference. The flood exposure is quantified based on a set of floodplain maps (for 2015, 1 in 100-yr and 1 in 200-yr event) for Canada derived from the CaMa-Flood global flood model. To obtain further insights at the regional level, the methodology is implemented over six flood-prone River Basins in Canada. We find that about 9% (3.31 million) and 11% (3.90 million) of the Canadian population resides within 1 in 100-yr and 1 in 200-yr floodplains. We notice an excellent performance of WorldPop, and LandScan in most of the cases, which is unaffected by the representation of flood hazard, while Global Human Settlement and Gridded Population of the World showed large deviations. At last, we determined the long-term dynamics of population flood exposure and vulnerability from 2006 to 2019. Through this analysis, we also identify the regions that contain a significantly larger population exposed to floods. The relevant conclusions derived from the study highlight the need for careful selection of population datasets for preventing further amplification of uncertainties in flood risk. We recommend a detailed assessment of the severely exposed regions by including precise ground-level information. The results derived from this study may be useful not only for flood risk management but also contribute to understanding other disaster impacts on human-environment interrelationships. • Five population datasets are considered for quantifying flood exposure over Canada. • WorldPop and LandScan provide the closest estimates when compared with census data. • Skill of population datasets is tested over six flood-prone River Basins of Canada. • Long-term changes in degree of exposure is characterized at census-division level. • Highly exposed divisions are identified for ensuring detailed flood-risk assessment
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.