Votre recherche
Résultats 5 ressources
-
In Eastern Dhaka, perennial flood remains a constant threat to people and livelihoods. Learning from the micro-level experiences of the poor in the peri-urban areas of Dhaka provides insights on the intersections between physical vulnerability, flood response strategies, and adaptive capacity. Through a convergent mixed method, this study examines the physical vulnerability of residential buildings, flood damages, and local physical responses in three neighborhoods of Eastern Dhaka. Results show that the level of damage to buildings is the most important predictor of physical vulnerability to floods. Buildings that are older than 20 years old and built with natural materials are likely to experience high flood damages compared to buildings that are less than 10 years and constructed with durable materials. The study concludes that in addition to socio-economic interventions, a targeted and people-centered flood management regime that pays attention to age, material composition, and structural quality of houses is necessary to build residents’ adaptive capacities and long-term resilience to flooding. This study contributes to the emerging work on grassroots responses to flood vulnerabilities with practical insights for urban planners and disaster management professionals on particular interventions needed to improve the performance of local responses to flood risks and vulnerabilities.
-
Abstract The DRASTIC technique is commonly used to assess groundwater vulnerability. The main disadvantage of the DRASTIC method is the difficulty associated with identifying appropriate ratings and weight assignments for each parameter. To mitigate this issue, ratings and weights can be approximated using different methods appropriate to the conditions of the study area. In this study, different linear (i.e., Wilcoxon test and statistical approaches) and nonlinear (Genetic algorithm [GA]) modifications for calibration of the DRASTIC framework using nitrate (NO 3 ) concentrations were compared through the preparation of groundwater vulnerability maps of the Meshqin‐Shahr plain, Iran. Twenty‐two groundwater samples were collected from wells in the study area, and their respective NO 3 concentrations were used to modify the ratings and weights of the DRASTIC parameters. The areas found to have the highest vulnerability were in the eastern, central, and western regions of the plain. Results showed that the modified DRASTIC frameworks performed well, compared to the unmodified DRASTIC. When measured NO 3 concentrations were correlated with the vulnerability indices produced by each method, the unmodified DRASTIC method performed most poorly, and the Wilcoxon–GA–DRASTIC method proved optimal. Compared to the unmodified DRASTIC method with an R 2 of 0.22, the Wilcoxon–GA–DRASTIC obtained a maximum R 2 value of 0.78. Modification of DRASTIC parameter ratings was found to be more efficient than the modification of the weights in establishing an accurately calibrated DRASTIC framework. However, modification of parameter ratings and weights together increased the R 2 value to the highest degree. , Article impact statement : The results showed that both linear and nonlinear methods are useful in modifying the ratings and weights of the DRASTIC method for assessing the groundwater vulnerability.