Votre recherche
Résultats 182 ressources
-
The communication of information about natural hazard risks to the public is a difficult task for decision makers. Research suggests that newer forms of technology present useful options for building disaster resilience. However, how effectively these newer forms of media can be used to inform populations of the potential hazard risks in their community remains unclear. This research uses primary data from an in-person survey of 164 residents of Newport Beach, California during the spring of 2014 to ascertain the current and preferred mechanisms through which individuals receive information on flood risks in their community. Factor analysis of survey data identified two predominant routes of dissemination for risk information: older traditional media and newer social media sources. A logistic regression model was specified to identify predictors for choosing a particular communication route. This analysis revealed that age is the central factor in predicting the sources people use to receive risk information. We follow the analysis by discussing this finding and its policy implications.
-
Floods are the most common natural hazard worldwide. GARI is a flood risk management and analysis tool that is being developed by the Environmental and Nordic Remote Sensing Group (TENOR) of INRS in Quebec City (Canada). Beyond mapping the flooded areas and water levels, GARI allows for the estimation, analysis and visualization of flood risks for individuals, residential buildings, and population. Information can therefore be used during the different phases of flood risk management. In the operational phase, GARI can use satellite radar images to map in near real-time the flooded areas and water levels. It uses an innovative approach that combines Radarsat-2 and hydraulic data, specifically flood return period data. Information from the GARI enable municipalities and individuals to anticipate the impacts of a flood in a given area, to mitigate these impacts, to prepare, and to better coordinate their actions during a flood.
-
Abstract Public communication about drought and water availability risks poses challenges to a potentially disinterested public. Water management professionals, though, have a responsibility to work with the public to engage in communication about water and environmental risks. Because limited research in water management examines organizational communication practices and perceptions, insights into research and practice can be gained through investigation of current applications of these risk communication efforts. Guided by the CAUSE model, which explains common goals in communicating risk information to the public (e.g., creating Confidence, generating Awareness, enhancing Understanding, gaining Satisfaction, and motivating Enactment), semistructured interviews of professionals ( N = 25) employed by Texas groundwater conservation districts were conducted. The interviews examined how CAUSE model considerations factor in to communication about drought and water availability risks. These data suggest that many work to build constituents’ confidence in their districts. Although audiences and constituents living in drought‐prone areas were reported as being engaged with water availability risks and solutions, many district officials noted constituents’ lack of perceived risk and engagement. Some managers also indicated that public understanding was a secondary concern of their primary responsibilities and that the public often seemed apathetic about technical details related to water conservation risks. Overall, results suggest complicated dynamics between officials and the public regarding information access and motivation. The article also outlines extensions of the CAUSE model and implications for improving public communication about drought and water availability risks.
-
At least to some extent due to pressure from international donors, many countries have become more fiscally decentralized the underlying premise being that greater decentralization might improve the provision of local public goods and services. We test this proposition by determining whether relatively more decentralized countries fare better when natural disasters strike in terms of its effects on the population. Overall, we find evidence supporting our maintained hypothesis, though the effect appears much more robust in developing countries.
-
The historical disparities in the socio-demographic structure of New Orleans shaped the social vulnerability of local residents and their responses to Hurricane Katrina and its aftermath. These disparities, derived from race, class, gender, and age differences, have resulted in the uneven impact of the catastrophe on various communities in New Orleans, and importantly, their ability to recover. This article examines how the pre-existing social vulnerabilities within New Orleans interacted with the level of flood exposure to produce inequities in the socio-spatial patterns of recovery. Utilizing a combination of statistical and spatial approaches, we found a distinct geographic pattern to the recovery suggesting that the social burdens and impacts from Hurricane Katrina are uneven—the less flooded and less vulnerable areas are recovering faster than tracts with more vulnerable populations and higher levels of flooding. However, there is a more nuanced story, which suggests that it is neighborhoods in the mid-range of social vulnerability where recovery is lagging. While private resources and government programs help groups in the high and low categories of social vulnerability, the middle group shows the slowest rates of recovery. Further, it appears that the congressionally funded State of Louisiana Road Home Program (designed to provide compensation to Louisiana’s homeowners who suffered impacts by Hurricanes Katrina and Rita for the damage to their home) is not having a significant effect in stimulating recovery within the city.
-
If research on attribution of extreme weather events is to inform emerging climate change policies, it needs to diagnose all of the components of risk.
-
Changes in society's vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (g10000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
-
Phosphorus (P) loss in agricultural discharge has typically been associated with surface runoff; however, tile drains have been identified as a key P pathway due to preferential transport. Identifying when and where these pathways are active may establish high‐risk periods and regions that are vulnerable for P loss. A synthesis of high‐frequency, runoff data from eight cropped fields across the Great Lakes region of North America over a 3‐yr period showed that both surface and tile flow occurred year‐round, although tile flow occurred more frequently. The relative timing of surface and tile flow activation was classified into four response types to infer runoff‐generation processes. Response types were found to vary with season and soil texture. In most events across all sites, tile responses preceded surface flow, whereas the occurrence of surface flow prior to tile flow was uncommon. The simultaneous activation of pathways, indicating rapid connectivity through the vadose zone, was seldom observed at the loam sites but occurred at clay sites during spring and summer. Surface flow at the loam sites was often generated as saturation‐excess, a phenomenon rarely observed on the clay sites. Contrary to expectations, significant differences in P loads in tiles were not apparent under the different response types. This may be due to the frequency of the water quality sampling or may indicate that factors other than surface‐tile hydrologic connectivity drive tile P concentrations. This work provides new insight into spatial and temporal differences in runoff mechanisms in tile‐drained landscapes. Core Ideas Activation of surface runoff and tile flow differ with soil texture and season. Timing of flow path activation was used to infer hydrological processes. Connectivity between the surface and tiles exists on clay soil during growing season. Rapid connectivity between the surface and tiles occurs less frequently on loam.
-
The moisture maximization approach to estimate the Probable Maximum Precipitation (PMP) has a simple technique for controlling the risk of overestimating PMP: the maximization ratio is limited by an upper bound. The upper bound limit depends on storm records and watershed characteristics. However, it is not readily available in many watersheds. A robust scientific justification for limiting the maximization ratio is missing. In this paper, a novel approach is proposed to estimate the maximization ratio which does not impose an upper limit to the ratio. The new approach, which uses regional climate model data, is based on constructing annual maximum precipitable water time series with precipitable water values for which atmospheric variables are similar to the original event to be maximized. These time series are then used to estimate the 100-year return period precipitable water value required to calculate the maximization ratio. The new approach was tested in three watersheds in the province of Quebec, Canada. Results showed that maximization ratio values were lower than the proposed upper bound value for these watersheds. In comparison to the approach using an upper bound, this proposed approach reduced PMP in these watersheds by 11%. This article is protected by copyright. All rights reserved.
-
Several top‐down and bottom‐up forces have been put forward to explain variable infestation rates of zooplankton by epibionts. Among top‐down forces, fish predation affects epibiont prevalence on zooplanktonic organisms, either by eliminating more conspicuous, heavily burdened individuals, or by reducing population size of zooplankton hosts, with consequences for substrate availability for epibionts. However, detailed experimental‐based information on the effects of top‐down forces is still lacking. Among bottom‐up forces, light can potentially control populations of photosynthetic epibionts. Therefore, both changes in light penetration in the water column and the vertical position of hosts in the water column could affect the photic conditions in which epibionts live and could thus control their population growth. We tested experimentally the hypothesis that both light limitation and fish predation affect epibiont burden on zooplankton. Moreover, we also tested the hypothesis that zooplanktivorous fish affect the prevalence and burden of the epibiotic alga Colacium sp. (Euglenida) on zooplankton not only by direct predation, but also by affecting the vertical distribution of zooplankton. We analyzed Colacium burden on two zooplankton genera that responded differently to the presence of zooplanktivorous fish by altering their daytime vertical distributions, thus exposing photosynthetic epibionts to different light conditions. Colacium burden on the two zooplankton genera was also compared between enclosures with different degrees of light limitation. Our results suggest that (1) ambient light limitation has the potential to reduce the burden of photosynthetic epibionts on zooplankton in natural conditions, and (2) zooplankton behavior (e.g., daytime refuge use to escape fish predation) can reduce the burden by exposing photosynthetic epibionts to suboptimal light conditions.
-
In time series of essential climatological variables, many discontinuities are created not by climate factors but changes in the measuring system, including relocations, changes in instrumentation, exposure or even observation practices. Some of these changes occur due to reorganization, cost-efficiency or innovation. In the last few decades, station movements have often been accompanied by the introduction of an automatic weather station (AWS). Our study identifies the biases in daily maximum and minimum temperatures using parallel records of manual and automated observations. They are selected to minimize the differences in surrounding environment, exposition, distance and difference in elevation. Therefore, the type of instrumentation is the most important biasing factor between both measurements. The pairs of weather stations are located in Piedmont, a region of Italy, and in Gaspe Peninsula, a region of Canada. They have 6years of overlapping period on average, and 5110 daily values. The approach implemented for the comparison is divided in four main parts: a statistical characterization of the daily temperature series; a comparison between the daily series; a comparison between the types of events, heat wave, cold wave and normal events; and a verification of the homogeneity of the difference series. Our results show a higher frequency of warm (+10%) and extremely warm (+35%) days in the automated system, compared with the parallel manual record. Consequently, the use of a composite record could significantly bias the calculation of extreme events.
-
In response to extreme flood events and an increasing awareness that traditional flood control measures alone are inadequate to deal with growing flood risks, spatial flood risk management strategies have been introduced. These strategies do not only aim to reduce the probability and consequences of floods, they also aim to improve local and regional spatial qualities. To date, however, research has been largely ignorant as to how spatial quality, as part of spatial flood risk management strategies, can be successfully achieved in practice. Therefore, this research aims to illuminate how spatial quality is achieved in planning practice. This is done by evaluating the configurations of policy instruments that have been applied in the Dutch Room for the River policy program to successfully achieve spatial quality. This policy program is well known for its dual objective of accommodating higher flood levels as well as improving the spatial quality of the riverine areas. Based on a qualitative comparative analysis, we identified three successful configurations of policy instruments. These constitute three distinct management strategies: the “program‐as‐guardian”, the “project‐as‐driver,” and “going all‐in” strategies. These strategies provide important leads in furthering the development and implementation of spatial flood risk management, both in the Netherlands and abroad.
-
Stream restoration approaches most often quantify habitat degradation, and therefore recovery objectives, on aquatic habitat metrics based on a narrow range of species needs (e.g., salmon and trout), as well as channel evolution models and channel design tools biased toward single-threaded, and “sediment-balanced” channel patterns. Although this strategy enhances perceived habitat needs, it often fails to properly identify the underlying geomorphological and ecological processes limiting species recovery and ecosystem restoration. In this paper, a unique process-based approach to restoration that strives to restore degraded stream, river, or meadow systems to the premanipulated condition is presented. The proposed relatively simple Geomorphic Grade Line (GGL) design method is based on Geographic Information System (GIS) and field-based analyses and the development of design maps using relative elevation models that expose the relic predisturbance valley surface. Several case studies are presented to both describe the development of the GGL method and to illustrate how the GGL method of evaluating valley surfaces has been applied to Stage 0 restoration design. The paper also summarizes the wide applicability of the GGL method, the advantages and limitations of the method, and key considerations for future designers of Stage 0 systems anywhere in the world. By presenting this ongoing Stage 0 restoration work, the authors hope to inspire other practitioners to embrace the restoration of dynamism and diversity through restoring the processes that create multifaceted river systems that provide long-term resiliency, meta-stability, larger and more complex and diverse habitats, and optimal ecosystem benefits.
-
Abstract Youth exposed to traumatic events are at higher risk for negative developmental outcomes, including low academic performance, poor social skills, and mental health concerns. To best address these risks, school‐based intervention services, and trauma‐informed practices can be provided. The goal of this study was to systematically review the intervention research conducted on school‐based trauma interventions, with specific attention to examine intervention effectiveness, feasibility, and acceptability across studies. It was found that feasibility and acceptability are not frequently examined, though the data available showed that Enhancing Resiliency Amongst Students Experiencing‐Stress (ERASE‐Stress) and school‐based cognitive behavioral therapy (CBT) had high rates of fidelity; and school‐based CBT had high levels of acceptability. The review also examined demographic variables and found that U. S.‐based research reported racially/ethnically diverse samples, and most samples were from low‐income populations. Most studies examined youth exposed to war‐ and terror‐related traumas or natural disaster‐related traumas. Additionally, this review provides future directions for research and reveals the need for further research on intervention feasibility and acceptability. A brief description of practice recommendations based on prior research has also been included. It also exposes the need for studies that examine various student demographic variables that are currently not examined and consistency in rating scale use in school‐based trauma intervention research.