Votre recherche
Résultats 79 ressources
-
This paper investigates local-scale social vulnerability to flood hazards in Romania, aiming to identify the most vulnerable social and demographic groups across a wide range of geographical locations by considering three dimensions: demographic, socioeconomic, and the built environment. The purpose of the paper is threefold: first, it strives to improve the Social Vulnerability model (SoVI®) by applying a different weighting method adapted to the Romanian context, taking into consideration the municipalities exposed to flood movements. Second, it aims to develop an assessment model for the most vulnerable communities by measuring the heterogeneity according to local indicators related to disaster risks. Third, it aims to facilitate emergency managers to identify community sub-groups that are more susceptible to loss and to increase the resilience of local communities. To perform local-level vulnerability mapping, 28 variables were selected and three aggregated indexes were constructed with the help of the ArcGIS software. Moreover, a model of Geographically Weighted Regression (GWR) between communities directly affected by floods and localities with high- and very high values of the Local Social Vulnerability Index (LoSoVI) was used to explore the spatial relationship among them and to compare the appropriateness of Ordinary Least Square (OLS) and GWR for such modelling. The established GWR model has revealed that the negative effects of flood hazards are often associated with communities with a high degree of social vulnerability. Thus, the analysis is able to provide a more comprehensive picture on communities in desperate need of financial resources in order to have the ability to diminish the negative impacts of flood hazards and to provide a more sustainable society.
-
28 Figure 7 : limites de la zone inondable et la zone inondée historiquement de la rive de Montréal de la rivière des prairies. [...] 68 Figure 27 : Aperçu de la table d’attributs de la base des données de la description de la sensibilité territoriale. [...] 41 Graphique 3 : Distribution des degrés de la sensibilité sociale par nombre d’aires de diffusion (206 AD au total) du secteur de la rivière des Prairies à Montréal à partir des résultats de l’indice ISSAIP des groupes de l’atelier de travail. [...] Cette analyse implique plusieurs étapes et le développement de plusieurs outils dont : la collecte des données disponibles et nécessaires pour réaliser un état des lieux des zones inondées historiquement pour une partie de la Ville de Montréal, la modélisation de l'espace occupé par l'eau selon différents niveaux d'eau possiblement atteints lors de débordement de la rivière, la collecte des donnée. [...] : la formation de réseaux de communication, la prise de décision, la création de consensus), qu’il est possible de mesurer, mais pas au moyen de données d’archives secondaires.
-
Abstract A leading challenge in measuring social vulnerability to hazards is for output metrics to better reflect the context in which vulnerability occurs. Through a meta-analysis of 67 flood disaster case studies (1997–2013), this paper profiles the leading drivers of social vulnerability to floods. The results identify demographic characteristics, socioeconomic status, and health as the leading empirical drivers of social vulnerability to damaging flood events. However, risk perception and coping capacity also featured prominently in the case studies, yet these factors tend to be poorly reflected in many social vulnerability indicators. The influence of social vulnerability drivers varied considerably by disaster stage and national setting, highlighting the importance of context in understanding social vulnerability precursors, processes, and outcomes. To help tailor quantitative indicators of social vulnerability to flood contexts, the article concludes with recommendations concerning temporal context, measurability, and indicator interrelationships.
-
Abstract Fatalities caused by natural hazards are driven not only by population exposure, but also by their vulnerability to these events, determined by intersecting characteristics such as education, age and income. Empirical evidence of the drivers of social vulnerability, however, is limited due to a lack of relevant data, in particular on a global scale. Consequently, existing global‐scale risk assessments rarely account for social vulnerability. To address this gap, we estimate regression models that predict fatalities caused by past flooding events ( n = 913) based on potential social vulnerability drivers. Analyzing 47 variables calculated from publicly available spatial data sets, we establish five statistically significant vulnerability variables: mean years of schooling; share of elderly; gender income gap; rural settlements; and walking time to nearest healthcare facility. We use the regression coefficients as weights to calculate the “ Glob al‐ E mpirical So cial V ulnerability I ndex (GlobE‐SoVI)” at a spatial resolution of ∼1 km. We find distinct spatial patterns of vulnerability within and across countries, with low GlobE‐SoVI scores (i.e., 1–2) in for example, Northern America, northern Europe, and Australia; and high scores (i.e., 9–10) in for example, northern Africa, the Middle East, and southern Asia. Globally, education has the highest relative contribution to vulnerability (roughly 58%), acting as a driver that reduces vulnerability; all other drivers increase vulnerability, with the gender income gap contributing ∼24% and the elderly another 11%. Due to its empirical foundation, the GlobE‐SoVI advances our understanding of social vulnerability drivers at global scale and can be used for global (flood) risk assessments. , Plain Language Summary Social vulnerability is rarely accounted for in global‐scale risk assessments. We develop an empirical social vulnerability map (“GlobE‐SoVI”) based on five key drivers of social vulnerability to flooding, that is, education, elderly, income inequality, rural settlements and travel time to healthcare, which we establish based on flood fatalities caused by past flooding events. Globally, we find education to have a high and reducing effect on social vulnerability, while all other drivers increase vulnerability. Integrating social vulnerability in global‐scale (flood) risk assessments can help inform global policy frameworks that aim to reduce risks posed by natural hazards and climate change as well as to foster more equitable development globally. , Key Points We develop a global map of social vulnerability at ∼1 km spatial resolution based on five key vulnerability drivers (“GlobE‐SoVI”) We establish vulnerability drivers empirically based on their contribution to predicting fatalities caused by past flooding events Accounting for social vulnerability in global‐scale (flood) risk assessments can inform global policy frameworks that aim to reduce risk
-
Landslide risk analysis is a common geotechnical evaluation and it aims to protect life and infrastructure. In the case of sensitive clay zones, landslides can affect large areas and are difficult to predict. Here we propose a methodology to determine the landslide hazard across a large territory, and we apply our approach to the Saint-Jean-Vianney area, Quebec, Canada. The initial step consists of creating a 3D model of the surficial deposits of the target area. After creating a chart of the material electrical resistivity adapted for eastern Canada, we applied electric induction to interpret the regional soil. We transposed parameter values obtained from the laboratory to a larger scale, that is to a regional slope using the results of a back analysis undertaken earlier, on a smaller slide within the same area. The regional 3D model of deposits is then used to develop a zonation map of slopes that are at risk and their respective constraint areas with the study region. This approach allowed us to target specific areas where a more precise stability analysis would be required. Our methodology offers an effective tool for stability analysis in territories characterized by the presence of sensitive clays.
-
Abstract Previous studies have drawn attention to racial and socioeconomic disparities in exposures associated with flood events at varying spatial scales, but most of these studies have not differentiated flood risk. Assessing flood risk without differentiating floods by their characteristics (e.g. duration and intensity of precipitation leading to flooding) may lead to less accurate estimates of the most vulnerable locations and populations. In this study, we compare the spatial patterning of social vulnerability, types of housing, and housing tenure (i.e. rented vs. owned) between two specific flood types used operationally by the National Weather Service—flash floods and slow-rise floods—in the floodplains across the Contiguous United States (CONUS). We synthesized several datasets, including established distributions of flood hazards and flooding characteristics, indicators of socioeconomic status, social vulnerability, and housing characteristics, and used generalized estimating equations to examine the proportion of socially vulnerable populations and housing types and tenure residing in the flash and slow-rise flood extents. Our statistical findings show that the proportion of the slow-rise flooded area in the floodplains is significantly greater in tracts characterized by higher percentages of socially vulnerable. However, the results could not confirm the hypothesis that they are exposed considerably more than less vulnerable in the flash flooded floodplains. Considering housing-occupancy vulnerability, the percentage of renter-occupancies are greater in the flash flood floodplains compared to slow-rise, especially in areas with high rainfall accumulation producing storms (e.g. in the Southeast). This assessment contributes insights into how specific flood types could impact different populations and housing tenure across the CONUS and informs strategies to support urban and rural community resilience and planning at local and state levels.
-
Based on the Yearbook of Meteorological Disasters in China, we analyzed the spatiotemporal variations in major meteorological disaster (MD) losses at the provincial scale during 2001–2020 to determine the spatiotemporal variations in MDs and vulnerability in China. Our results suggest that the impacts of MDs, including floods, droughts, hail and strong winds (HSs), low temperature and frosts (LTFs), and typhoons, have been substantial in China. MDs in China affect an average of 316.3 million people and 34.3 million hectares of crops each year, causing 1,739 deaths and costing 372.3 billion yuan in direct economic losses (DELs). Floods and droughts affected more of the population in China than the other MDs. Fatalities and DELs were mainly caused by floods, and the affected crop area was mainly impacted by drought. The national average MD losses decreased significantly, except for DELs. The trends in the affected population and crop area were mainly caused by droughts, and the trends in fatalities and DELs were dominated by floods. Floods and typhoons showed increasing influence in the last two decades relative to other disasters. The annual mean and long-term trends in MD losses exhibited regional heterogeneity and were subject to different dominant hazards in different regions. The disaster losses and their trends in southeastern China were mainly attributed to typhoons. The affected population, crop area, and DELs were all significantly and positively correlated with exposure. The vulnerability of the population, crops, and economy tended to decrease. Economic development reduced the vulnerability of the population and economy but showed no significant influence on the vulnerability of crops. Our findings suggest that more focus should be placed on the impacts of floods and typhoons and that socioeconomic development has an important influence on the vulnerability of the population and economy. These results provide a foundation for designing effective disaster prevention and mitigation measures.