Votre recherche
Résultats 38 ressources
-
Abstract Global flood impacts have risen in recent decades. While increasing exposure was the dominant driver of surging impacts, counteracting vulnerability reductions have been detected, but were too weak to reverse this trend. To assess the ongoing progress on vulnerability reduction, we combine a recently available dataset of flooded areas derived from satellite imagery for 913 events with four global disaster databases and socio-economic data. Event-specific flood vulnerabilities for assets, fatalities and displacements reveal a lack of progress in reducing global flood vulnerability from 2000—2018. We examine the relationship between vulnerabilities and human development, inequality, flood exposure and local structural characteristics. We find that vulnerability levels are significantly lower in areas with good structural characteristics and significantly higher in low developed areas. However, socio-economic development was insufficient to reduce vulnerabilities over the study period. Nevertheless, the strong correlation between vulnerability and structural characteristics suggests further potential for adaptation through vulnerability reduction.
-
Abstract To increase the resilience of communities against floods, it is necessary to develop methodologies to estimate the vulnerability. The concept of vulnerability is multidimensional, but most flood vulnerability studies have focused only on the social approach. Nevertheless, in recent years, following seismic analysis, the physical point of view has increased its relevance. Therefore, the present study proposes a methodology to map the flood physical vulnerability and applies it using an index at urban parcel scale for a medium-sized town (Ponferrada, Spain). This index is based on multiple indicators fed by geographical open-source data, once they have been normalized and combined with different weights extracted from an Analytic Hierarchic Process. The results show a raster map of the physical vulnerability index that facilitates future emergency and flood risk management to diminish potential damages. A total of 22.7% of the urban parcels in the studied town present an index value higher than 0.4, which is considered highly vulnerable. The location of these urban parcels would have passed unnoticed without the use of open governmental datasets, when an average value would have been calculated for the overall municipality. Moreover, the building percentage covered by water was the most influential indicator in the study area, where the simulated flood was generated by an alleged dam break. The study exceeds the spatial constraints of collecting this type of data by direct interviews with inhabitants and allows for working with larger areas, identifying the physical buildings and infrastructure differences among the urban parcels.
-
This paper investigates local-scale social vulnerability to flood hazards in Romania, aiming to identify the most vulnerable social and demographic groups across a wide range of geographical locations by considering three dimensions: demographic, socioeconomic, and the built environment. The purpose of the paper is threefold: first, it strives to improve the Social Vulnerability model (SoVI®) by applying a different weighting method adapted to the Romanian context, taking into consideration the municipalities exposed to flood movements. Second, it aims to develop an assessment model for the most vulnerable communities by measuring the heterogeneity according to local indicators related to disaster risks. Third, it aims to facilitate emergency managers to identify community sub-groups that are more susceptible to loss and to increase the resilience of local communities. To perform local-level vulnerability mapping, 28 variables were selected and three aggregated indexes were constructed with the help of the ArcGIS software. Moreover, a model of Geographically Weighted Regression (GWR) between communities directly affected by floods and localities with high- and very high values of the Local Social Vulnerability Index (LoSoVI) was used to explore the spatial relationship among them and to compare the appropriateness of Ordinary Least Square (OLS) and GWR for such modelling. The established GWR model has revealed that the negative effects of flood hazards are often associated with communities with a high degree of social vulnerability. Thus, the analysis is able to provide a more comprehensive picture on communities in desperate need of financial resources in order to have the ability to diminish the negative impacts of flood hazards and to provide a more sustainable society.
-
28 Figure 7 : limites de la zone inondable et la zone inondée historiquement de la rive de Montréal de la rivière des prairies. [...] 68 Figure 27 : Aperçu de la table d’attributs de la base des données de la description de la sensibilité territoriale. [...] 41 Graphique 3 : Distribution des degrés de la sensibilité sociale par nombre d’aires de diffusion (206 AD au total) du secteur de la rivière des Prairies à Montréal à partir des résultats de l’indice ISSAIP des groupes de l’atelier de travail. [...] Cette analyse implique plusieurs étapes et le développement de plusieurs outils dont : la collecte des données disponibles et nécessaires pour réaliser un état des lieux des zones inondées historiquement pour une partie de la Ville de Montréal, la modélisation de l'espace occupé par l'eau selon différents niveaux d'eau possiblement atteints lors de débordement de la rivière, la collecte des donnée. [...] : la formation de réseaux de communication, la prise de décision, la création de consensus), qu’il est possible de mesurer, mais pas au moyen de données d’archives secondaires.
-
Abstract Fatalities caused by natural hazards are driven not only by population exposure, but also by their vulnerability to these events, determined by intersecting characteristics such as education, age and income. Empirical evidence of the drivers of social vulnerability, however, is limited due to a lack of relevant data, in particular on a global scale. Consequently, existing global‐scale risk assessments rarely account for social vulnerability. To address this gap, we estimate regression models that predict fatalities caused by past flooding events ( n = 913) based on potential social vulnerability drivers. Analyzing 47 variables calculated from publicly available spatial data sets, we establish five statistically significant vulnerability variables: mean years of schooling; share of elderly; gender income gap; rural settlements; and walking time to nearest healthcare facility. We use the regression coefficients as weights to calculate the “ Glob al‐ E mpirical So cial V ulnerability I ndex (GlobE‐SoVI)” at a spatial resolution of ∼1 km. We find distinct spatial patterns of vulnerability within and across countries, with low GlobE‐SoVI scores (i.e., 1–2) in for example, Northern America, northern Europe, and Australia; and high scores (i.e., 9–10) in for example, northern Africa, the Middle East, and southern Asia. Globally, education has the highest relative contribution to vulnerability (roughly 58%), acting as a driver that reduces vulnerability; all other drivers increase vulnerability, with the gender income gap contributing ∼24% and the elderly another 11%. Due to its empirical foundation, the GlobE‐SoVI advances our understanding of social vulnerability drivers at global scale and can be used for global (flood) risk assessments. , Plain Language Summary Social vulnerability is rarely accounted for in global‐scale risk assessments. We develop an empirical social vulnerability map (“GlobE‐SoVI”) based on five key drivers of social vulnerability to flooding, that is, education, elderly, income inequality, rural settlements and travel time to healthcare, which we establish based on flood fatalities caused by past flooding events. Globally, we find education to have a high and reducing effect on social vulnerability, while all other drivers increase vulnerability. Integrating social vulnerability in global‐scale (flood) risk assessments can help inform global policy frameworks that aim to reduce risks posed by natural hazards and climate change as well as to foster more equitable development globally. , Key Points We develop a global map of social vulnerability at ∼1 km spatial resolution based on five key vulnerability drivers (“GlobE‐SoVI”) We establish vulnerability drivers empirically based on their contribution to predicting fatalities caused by past flooding events Accounting for social vulnerability in global‐scale (flood) risk assessments can inform global policy frameworks that aim to reduce risk
-
Tokyo is located in a lowland area that is vulnerable to flooding. Due to global climate change, the scalability and frequency of flooding is increasing. On the other hand, population aging and family structural changes, as well as the lack of adaptation measures, would accelerate flooding vulnerability. The key factors involved in social vulnerability must be studied to reduce the risk of flooding. In this study, we refer to the MOVE framework (a disaster vulnerability assessment framework) and analyze it from three perspectives: Exposure to social vulnerability, susceptibility, and resilience. We subsequently develop an index system to complete the evaluation using 11 indicators. The collected data will help reveal social vulnerability to floods in the Katsushika Ward, Tokyo, using the information entropy method and GIS. We found that the western region of the Katsushika Ward is at more risk than the eastern region during flooding. Additionally, the possibility of a serious crisis erupting is greater in the southwestern region than in the northwestern region. Consequently, we conclude that the spatial distribution of flooding varies in the region. The results of this study will help in understanding social vulnerability, in selecting and combining adaptation measures suited to the characteristics of the area, and in the effective and efficient implementation of these measures by the local government’s disaster department.