Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. MODELING INDIVIDUAL TREE MORTALITY RATES USING MARGINAL AND RANDOM EFFECTS REGRESSION MODELS
  • Accueil

Bibliographie complète

Retourner à la liste des résultats
  • 1
  • ...
  • 717
  • 718
  • 719
  • 720
  • 721
  • ...
  • 888
  • Page 719 de 888

MODELING INDIVIDUAL TREE MORTALITY RATES USING MARGINAL AND RANDOM EFFECTS REGRESSION MODELS

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Type de ressource
Article de revue
Auteurs/contributeurs
  • Ma, Zhihai (Auteur)
  • Peng, Changhui (Auteur)
  • Li, Weizhong (Auteur)
  • Zhu, Qiuan (Auteur)
  • Wang, Weifeng (Auteur)
  • Song, Xinzhang (Auteur)
  • Liu, Jianwei (Auteur)
Titre
MODELING INDIVIDUAL TREE MORTALITY RATES USING MARGINAL AND RANDOM EFFECTS REGRESSION MODELS
Résumé
A bstract Developing models to predict tree mortality using data from long‐term repeated measurement data sets can be difficult and challenging due to the nature of mortality as well as the effects of dependence on observations. Marginal (population‐averaged) generalized estimating equations (GEE) and random effects (subject‐specific) models offer two possible ways to overcome these effects. For this study, standard logistic, marginal logistic based on the GEE approach, and random logistic regression models were fitted and compared. In addition, four model evaluation statistics were calculated by means of K ‐fold cross‐valuation. They include the mean prediction error, the mean absolute prediction error, the variance of prediction error, and the mean square error. Results from this study suggest that the random effects model produced the smallest evaluation statistics among the three models. Although marginal logistic regression accommodated for correlations between observations, it did not provide noticeable improvements of model performance compared to the standard logistic regression model that assumed impendence. This study indicates that the random effects model was able to increase the overall accuracy of mortality modeling. Moreover, it was able to ascertain correlation derived from the hierarchal data structure as well as serial correlation generated through repeated measurements.
Publication
Natural Resource Modeling
Volume
26
Numéro
2
Pages
131-153
Date
05/2013
Abrév. de revue
Natural Resource Modeling
Langue
en
DOI
10.1111/j.1939-7445.2012.00124.x
ISSN
0890-8575, 1939-7445
URL
https://onlinelibrary.wiley.com/doi/10.1111/j.1939-7445.2012.00124.x
Consulté le
18/11/2024 21:20
Catalogue de bibl.
DOI.org (Crossref)
Référence
Ma, Z., Peng, C., Li, W., Zhu, Q., Wang, W., Song, X., & Liu, J. (2013). MODELING INDIVIDUAL TREE MORTALITY RATES USING MARGINAL AND RANDOM EFFECTS REGRESSION MODELS. Natural Resource Modeling, 26(2), 131–153. https://doi.org/10.1111/j.1939-7445.2012.00124.x
Auteur·e·s
  • Peng, Changhui
Lien vers cette notice
https://bibliographies.uqam.ca/escer/bibliographie/QJYSGH5S
  • 1
  • ...
  • 717
  • 718
  • 719
  • 720
  • 721
  • ...
  • 888
  • Page 719 de 888

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web