Bibliographie complète
Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies
Type de ressource
Auteurs/contributeurs
- Chen, Jie (Auteur)
- St-Denis, Blaise Gauvin (Auteur)
- Brissette, François P. (Auteur)
- Lucas-Picher, Philippe (Auteur)
Titre
Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies
Résumé
Abstract
Postprocessing of climate model outputs is usually performed to remove biases prior to performing climate change impact studies. The evaluation of the performance of bias correction methods is routinely done by comparing postprocessed outputs to observed data. However, such an approach does not take into account the inherent uncertainty linked to natural climate variability and may end up recommending unnecessary complex postprocessing methods. This study evaluates the performance of bias correction methods using natural variability as a baseline. This baseline implies that any bias between model simulations and observations is only significant if it is larger than the natural climate variability. Four bias correction methods are evaluated with respect to reproducing a set of climatic and hydrological statistics. When using natural variability as a baseline, complex bias correction methods still outperform the simplest ones for precipitation and temperature time series, although the differences are much smaller than in all previous studies. However, after driving a hydrological model using the bias-corrected precipitation and temperature, all bias correction methods perform similarly with respect to reproducing 46 hydrological metrics over two watersheds in different climatic zones. The sophisticated distribution mapping correction methods show little advantage over the simplest scaling method. The main conclusion is that simple bias correction methods appear to be just as good as other more complex methods for hydrological climate change impact studies. While sophisticated methods may appear more theoretically sound, this additional complexity appears to be unjustified in hydrological impact studies when taking into account the uncertainty linked to natural climate variability.
Publication
Journal of Hydrometeorology
Volume
17
Numéro
8
Pages
2155-2174
Date
2016-08-01
Langue
en
ISSN
1525-755X, 1525-7541
Consulté le
05/03/2025 20:00
Catalogue de bibl.
DOI.org (Crossref)
Référence
Chen, J., St-Denis, B. G., Brissette, F. P., & Lucas-Picher, P. (2016). Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies. Journal of Hydrometeorology, 17(8), 2155–2174. https://doi.org/10.1175/JHM-D-15-0099.1
Auteur·e·s
Lien vers cette notice