Votre recherche
Résultats 79 ressources
-
The carbon use efficiency (CUE) of ecosystems, expressed as the ratio of net primary production (NPP) and gross primary production (GPP), is extremely sensitive to climate change and has a great effect on the carbon cycles of terrestrial ecosystems. Climate change leads to changes in vegetation, resulting in different CUE values, especially on the Qinghai-Tibet Plateau, one of the most climate-sensitive regions in the world. However, the change trend and the intrinsic mechanism of climate effects on CUE in the future climate change scenario are not clear in this region. Based on the scheme of the coupled model intercomparison project (CMIP6), we analyze the simulation results of the five models of the scenario model intercomparison project (ScenarioMIP) under three different typical future climate scenarios, including SSP1-2.6, SSP3-7.0 and SSP5-8.5, on the Qinghai-Tibet Plateau in 2015–2100 with methods of model-averaging to average the long-term forecast of the five several well-known forecast models for three alternative climate scenarios with three radiative forcing levels to discuss the CUE changes and a structural equations modeling (SEM) approach to examine how the trends in GPP, NPP, and CUE related to different climate factors. The results show that (1) GPP and NPP demonstrated an upward trend in a long time series of 86 years, and the upward trend became increasingly substantial with the increase in radiation forcing; (2) the ecosystem CUE of the Qinghai-Tibet Plateau will decrease in the long time series in the future, and it shows a substantial decreasing trend with the increase in radiation forcing; and (3) the dominant climate factor affecting CUE is temperature of the factors included in these models, which affects CUE mainly through GPP and NPP to produce indirect effects. Temperature has a higher comprehensive effect on CUE than precipitation and CO2, which are negative effects on CUE on an annual scale. Our finding that the CUE decreases in the future suggests that we must pay more attention to the vegetation and CUE changes, which will produce great effects on the regional carbon dynamics and balance.
-
Rapid urbanization has led to the continuous deterioration of the surrounding natural ecosystem. It is important to identify the key urbanization factors that affect ecosystem services and analyze the potential effects of these factors on the ecosystem. We selected the Beijing, Tianjin, and Hebei (BTH) urban agglomeration to investigate these effects, and designed three indicators to map the urbanization level: Population density, gross domestic product (GDP) density, and the construction land proportion. Four indicators were chosen to quantify ecosystem services: Food production, carbon sequestration and oxygen production, water conservation, and soil conservation. To handle the nonlinear interactions, we used a random forest (RF) method to assess the effect of urbanization on ecosystem services in the BTH area from 2000 to 2014. Our study demonstrated that population density and economic growth were the internal driving forces affecting ecosystem services. We observed changing trends in the effect of urbanization: The effect of population density on ecosystem services increased, the effect of the proportion of construction land was consistent with population density, and the effect of GDP density on ecosystem services decreased. Our results suggest that controlling the population and GDP would significantly influence the sustainable development in large urban areas.
-
The 2001–2012 MODIS MCD12Q1 land cover data and MOD17A3 NPP data were used to calculate changes in land cover in China and annual changes in net primary productivity (NPP) during a 12-year period and to quantitatively analyze the effects of land cover change on the NPP of China’s terrestrial ecosystems. The results revealed that during the study period, no changes in land cover type occurred in 7447.31 thousand km2 of China, while the area of vegetation cover increased by 160.97 thousand km2 in the rest of the country. Forest cover increased to 20.91%, which was mainly due to the conversion of large areas of savanna (345.19 thousand km2) and cropland (178.96 thousand km2) to forest. During the 12-year study period, the annual mean NPP of China was 2.70 PgC and increased by 0.25 PgC, from 2.50 to 2.75 PgC. Of this change, 0.21 PgC occurred in areas where there was no land cover change, while 0.04 PgC occurred in areas where there was land cover change. The contributions of forest and cropland to NPP exhibited increasing trends, while the contributions of shrubland and grassland to NPP decreased. Among these land cover types, the contributions of forest and cropland to the national NPP were the greatest, accounting for 40.97% and 27.95%, respectively, of the annual total NPP. There was no significant correlation between changes in forest area and changes in total annual NPP (R2 < 0.1), while the correlation coefficient for changes in cropland area and total annual NPP was 0.48. Additionally, the area of cropland converted to other land cover types was negatively correlated with the changes in NPP, and the loss of cropland caused a reduction in the national NPP.
-
The transport of eroded soil to rivers changes the nutrient cycles of river ecosystems and has significant impacts on the regional eco-environment and human health. The Loess Plateau, a leading vegetation restoration region in China and the world, has experienced severe soil erosion and nutrient loss, however, the extent to which vegetation restoration prevents soil erosion export (to rivers) and it caused nutrient loss is unknown. To evaluate the effects of the first stage of the Grain for Green Project (GFGP) on the Loess Plateau (started in 1999 and ended in 2013), we analyzed the vegetation change trends and quantified the effects of GFGP on soil erosion export (to rivers) and it caused nutrient loss by considering soil erosion processes. The results were as follows: (1) in the first half of study period (from 1982 to 1998), the vegetation cover changed little, but after the implementation of the first stage of the GFGP (from 1999 to 2013), the vegetation cover of 75.0% of the study area showed a significant increase; (2) The proportion of eroded areas decreased from 41.8 to 26.7% as a result of the GFGP, and the erosion intensity lessened in most regions; the implementation significantly reduce the soil nutrient loss; (3) at the county level, soil erosion export could be avoided significantly by the increasing of vegetation greenness in the study area ( R = −0.49). These results illustrate the relationships among changes in vegetation cover, soil erosion and nutrient export, which could provide a reference for local government for making ecology-relative policies.
-
Abstract. In the Arctic, during polar night and early spring, ice clouds are separated into two leading types of ice clouds (TICs): (1) TIC1 clouds characterized by a large concentration of very small crystals and TIC2 clouds characterized by a low concentration of large ice crystals. Using a suitable parameterization of heterogeneous ice nucleation is essential for properly representing ice clouds in meteorological and climate models and subsequently understanding their interactions with aerosols and radiation. Here, we describe a new parameterization for ice crystal formation by heterogeneous nucleation in water-subsaturated conditions coupled to aerosol chemistry in the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). The parameterization is implemented in the Milbrandt and Yau (2005a, b) two-moment cloud microphysics scheme, and we assess how the WRF-Chem model responds to the run-time interaction between chemistry and the new parameterization. Well-documented reference cases provided us with in situ data from the spring 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) over Alaska. Our analysis reveals that the new parameterization clearly improves the representation of the ice water content (IWC) in polluted or unpolluted air masses and shows the poor performance of the reference parameterization in representing ice clouds with low IWC. The new parameterization is able to represent TIC1 and TIC2 microphysical characteristics at the top of the clouds, where heterogenous ice nucleation is most likely occurring, even with the known bias of simulated aerosols by WRF-Chem over the Arctic.
-
Abstract Compound events (CEs) are weather and climate events that result from multiple hazards or drivers with the potential to cause severe socio-economic impacts. Compared with isolated hazards, the multiple hazards/drivers associated with CEs can lead to higher economic losses and death tolls. Here, we provide the first analysis of multiple multivariate CEs potentially causing high-impact floods, droughts, and fires. Using observations and reanalysis data during 1980–2014, we analyse 27 hazard pairs and provide the first spatial estimates of their occurrences on the global scale. We identify hotspots of multivariate CEs including many socio-economically important regions such as North America, Russia and western Europe. We analyse the relative importance of different multivariate CEs in six continental regions to highlight CEs posing the highest risk. Our results provide initial guidance to assess the regional risk of CE events and an observationally-based dataset to aid evaluation of climate models for simulating multivariate CEs.
-
Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
-
Precipitation and temperature are among major climatic variables that are used to characterize extreme weather events, which can have profound impacts on ecosystems and society. Accurate simulation of these variables at the local scale is essential to adapt urban systems and policies to future climatic changes. However, accurate simulation of these climatic variables is difficult due to possible interdependence and feedbacks among them. In this paper, the concept of copulas was used to model seasonal interdependence between precipitation and temperature. Five copula functions were fitted to grid (approximately 10 km × 10 km) climate data from 1960 to 2013 in southern Ontario, Canada. Theoretical and empirical copulas were then compared with each other to select the most appropriate copula family for this region. Results showed that, of the tested copulas, none of them consistently performed the best over the entire region during all seasons. However, Gumbel copula was the best performer during the winter season, and Clayton performed best in the summer. More variability in terms of best copula was found in spring and fall seasons. By examining the likelihoods of concurrent extreme temperature and precipitation periods including wet/cool in the winter and dry/hot in the summer, we found that ignoring the joint distribution and confounding impacts of precipitation and temperature lead to the underestimation of occurrence of probabilities for these two concurrent extreme modes. This underestimation can also lead to incorrect conclusions and flawed decisions in terms of the severity of these extreme events.
-
Significance Arctic sea ice is an important component of the Earth’s climate system, but prior to its recent reduction, its long-term natural instabilities need to be better documented. In this study, information on past sea-ice conditions across the Arctic Ocean demonstrates that whereas its western and central parts remained occupied by perennial sea ice throughout the present interglacial, its southeastern sector close to the Russian margin experienced, at least, sporadic seasonal sea-ice-free conditions during the warmer part of the present interglacial until ∼4,000 y ago. Sea-ice-free conditions during summer in the southeastern Arctic Ocean seem, therefore, to be a recurrent feature linked to its natural variability during warm episodes of the past. , The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.
-
Abstract We evaluate the longitudinal variation in meridional shifts of the tropical rainbelt in response to natural and anthropogenic forcings using a large suite of coupled climate model simulations. We find that the energetic framework of the zonal mean Hadley cell is generally not useful for characterizing shifts of the rainbelt at regional scales, regardless of the characteristics of the forcing. Forcings with large hemispheric asymmetry such as extratropical volcanic forcing, meltwater forcing, and the Last Glacial Maximum give rise to robust zonal mean shifts of the rainbelt; however, the direction and magnitude of the shift vary strongly as a function of longitude. Even the Pacific rainband does not shift uniformly under any forcing considered. Forcings with weak hemispheric asymmetry such as CO 2 and mid‐Holocene forcing give rise to zonal mean shifts that are small or absent, but the rainbelt does shift regionally in coherent ways across models that may have important dynamical consequences. , Plain Language Summary A band of heavy precipitation spanning the deep tropics is an essential feature of the climate system that diverse ecosystems and billions of people depend on. It is well known that this rainbelt, when averaged across all longitudes, shifts north and south in response to heating or cooling the atmosphere in one hemisphere more than the other; this framework has been widely applied to study past tropical rainfall changes under differing climate states. However, we show using many different climate model experiments that this framework does not apply to regional shifts in the rainbelt. Changes in the rainbelt vary from place to place, and thus, data documenting north or south shifts in one location cannot be used to infer similar shifts at other longitudes. , Key Points The zonal mean ITCZ framework is generally not useful for characterizing regional shifts of the tropical rainbelt, regardless of the forcing Meridional shifts of the tropical rainbelt vary strongly with longitude under all forcings considered All forcings produce robust regional shifts in the rainbelt that are larger than (and sometime oppose the direction of) the zonal mean shift
-
Abstract A prognostic equation for the liquid fraction of mixed-phase particles has been recently added to the Predicted Particle Properties (P3) bulk microphysics scheme. Mixed-phase particles are necessary to simulate key microphysical processes leading to various winter precipitation types, such as ice pellets and freezing rain. To illustrate the impacts of predicting the bulk liquid fraction, the 1998 North American Ice Storm is simulated using the Weather Research and Forecasting (WRF) Model with the modified P3 scheme. It is found that simulating partial melting by predicting the bulk liquid fraction produces higher mass and number mixing ratios of rain. This leads to smaller rain sizes reaching the refreezing layer as well as a decrease in the freezing rain accumulation at the surface by up to 30% in some locations compared to when no liquid fraction is predicted. The increase in fall speed and density and decrease of particle diameter during partial melting combined with an improved representation of the refreezing process in the modified P3 leads to generally higher total solid surface precipitation rates than using the original P3 scheme. There is also an increase of solid precipitation in regions of ice pellet accumulation. Overall, the simulation of mixed-phase particles notably impacts the vertical and spatial distributions of precipitation properties.
-
Abstract Background During Spring 2019, many regions in Quebec (Canada) experienced severe floods. As much as 5,245 households were flooded and 7,452 persons were evacuated, causing extensive material and human damages. A large population-based study was therefore conducted to examine medium-term effects of this natural disaster on health and well-being. Methods Six to eight months post-floods, households located in the flooded zones (in one of the 6 Quebec regions the most severely affected) were randomly invited to participate to a telephone or a web-based survey (response rate=15.3%). Several psychological health outcomes were examined, including psychological distress (based on the 6-item Kessler Scale, score 0-24) and post-traumatic stress (based on the 15-item Impact of Event Scale, score 0-75). These outcomes were compared among 3 levels of exposure using Chi-square test: flooded (floodwater in ≥ 1 liveable room), disrupted (floodwater in non-liveable areas, loss of utilities, loss of access to services, or evacuation), and unaffected. Results Of the 3,437 participating households, 349 (10.2%) were flooded and 1230 (35.8%) were disrupted (but not flooded) during the 2019 floods. A steep gradient was observed for moderate/severe symptoms of post-traumatic stress (score ≥ 26) according to the level of exposure to flooding (unaffected: 3.0%; disrupted: 14.6%; flooded: 44.1%; p < 0.0005). For psychological distress (score ≥ 7), the baseline level (i.e. unaffected group) was 7.3% while it reached 15.0% and 38.4% in the disrupted and the flooded groups, respectively (p < 0.0005). Conclusions This study is among the largest to examine the psychological impacts of flooding. The magnitude of effects observed in flooded households is consistent with the literature and calls for stronger social and economic measures to support flood victims. Such support should help coping with initial stress, but also alleviating secondary stressors classically observed in post-flood settings. Key messages Psychological impacts of floods may persist for several months and may be observed in both flooded and disrupted people. Stronger social and economic measures are needed to better support flood victims, not only in the short but also in the longer term.
-
Aerosol–cloud interactions present a large source of uncertainties in atmospheric and climate models. One of the main challenges to simulate ice clouds is to reproduce the right ice nucleating particle concentration. In this study, we derive a parameterization for immersion freezing according to the classical nucleation theory. Our objective was to constrain this parameterization with observations taken over the Canadian Arctic during the Amundsen summer 2014 and 2016 campaigns. We found a linear dependence of contact angle and temperature. Using this approach, we were able to reproduce the scatter in ice nucleated particle concentrations within a factor 5 of observed values with a small negative bias. This parameterization would be easy to implement in climate and atmospheric models, but its representativeness has to first be validated against other datasets.
-
Wetlands are important modulators of atmospheric greenhouse gas (GHGs) concentrations. However, little is known about the magnitudes and spatiotemporal patterns of GHGs fluxes in wetlands on the Qinghai-Tibetan Plateau (QTP), the world’s largest and highest plateau. In this study, we measured soil temperature and the fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) in an alpine wetland on the QTP from April 2017 to April 2019 by the static chamber method, and from January 2017 to December 2017 by the eddy covariance (EC) method. The CO 2 and CH 4 emission measurements from both methods showed different relationships to soil temperature at different timescales (annual and seasonal). Based on such relationship patterns and soil temperature data (1960–2017), we extrapolated the CO 2 and CH 4 emissions of study site for the past 57 years: the mean CO 2 emission rate was 91.38 mg C m –2 h –1 on different measurement methods and timescales, with the range of the mean emission rate from 35.10 to 146.25 mg C m –2 h –1 , while the mean CH 4 emission rate was 2.75 mg C m –2 h –1 , with the ranges of the mean emission rate from 1.41 to 3.85 mg C m –2 h –1 . The estimated regional CO 2 and CH 4 emissions from permanent wetlands on the QTP were 94.29 and 2.37 Tg C year –1 , respectively. These results indicate that uncertainties caused by measuring method and timescale should be fully considered when extrapolating wetland GHGs fluxes from local sites to the regional level. Moreover, the results of global warming potential showed that CO 2 dominates the GHG balance of wetlands on the QTP.
-
Abstract Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.
-
The study was to investigate the change patterns of soil organic carbon (SOC), total nitrogen (TN), and soil C/N (C/N) in each soil sublayer along vegetation restoration in subtropical China. We collected soil samples in four typical plant communities along a restoration chronosequence. The soil physicochemical properties, fine root, and litter biomass were measured. Our results showed the proportion of SOC stocks (Cs) and TN stocks (Ns) in 20–30 and 30–40 cm soil layers increased, whereas that in 0–10 and 10–20 cm soil layers decreased. Different but well-constrained C/N was found among four restoration stages in each soil sublayer. The effect of soil factors was greater on the deep soil than the surface soil, while the effect of vegetation factors was just the opposite. Our study indicated that vegetation restoration promoted the uniform distribution of SOC and TN on the soil profile. The C/N was relatively stable along vegetation restoration in each soil layer. The accumulation of SOC and TN in the surface soil layer was controlled more by vegetation factors, while that in the lower layer was controlled by both vegetation factors and soil factors.
-
Après les nombreuses crues printanières qui ont affecté le sud du Québec depuis 2011, le gouvernement du Québec a annoncé en avril 2019 une refonte importante de son programme d’aide financière aux sinistrés. Le programme introduit désormais une couverture limitée à vie de 100 000 $ pour les inondations successives, une mesure unique au Canada. L’objectif de cet article est d’analyser le coût des inondations successives et les impacts financiers de cette limite de couverture pour les ménages.
-
Abstract We quantify the skill of Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 models to represent daily temperature extremes. We find CMIP models systematically exaggerate the magnitude of daily temperature anomalies for both cold and hot extremes. We assess the contribution to a daily temperature extreme from four terms: the long‐term mean annual cycle, the diurnal cycle, synoptic variability, and seasonal variability for both cold and hot extremes. These four terms are combined, and the overall performance of individual climate models assessed. This identifies those models that can simulate temperature extremes well and simulate them well for the right reasons. The new error metric shows that increases in horizontal resolution usually lead to a better performance particularly for the coarser resolution models. The CMIP6 improvements relative to CMIP5 are systematic across most land regions and are only partially explained by the increase in horizontal resolution, and other differences must therefore help explain the higher CMIP6 skill. , Key Points CMIP5 and CMIP6 models exaggerate the magnitude of daily temperature anomalies for hot days and cold nights extremes Higher‐resolution models improve the simulation of temperature extremes largely due to better simulation of synoptic scales CMIP6 outperforms the simulation of temperature extremes compared to CMIP5 beyond the benefits given by the higher resolution
-
Abstract Several far‐infrared (FIR) satellite missions are planned for the next decade, with a special interest for the Arctic region. A theoretical study is performed to help with the design of an FIR radiometer, whose configuration in terms of channels number and frequencies is optimized based on information content analysis. The problem is cast in a context of vertical column experiments (1D) to determine the optimal configuration of a FIR radiometer to study the Arctic polar night. If only observations of the FIR radiometer were assimilated, the results show that for humidity, 90% of the total information content is obtained with four bands, whereas for temperature, 10 bands are needed. When the FIR measurements are assimilated on top of those from the advanced infrared sounder (AIRS), the former bring in additional information between the surface and 850 hPa and from 550 to 250 hPa for humidity. Moreover, between 400 and 200 hPa, the FIR radiometer is better than AIRS at reducing the analysis error variance for humidity. This indicates the potential of FIR observations for improving water vapor analysis in the Arctic. , Key Points FIR channels add information for UTLS water vapor compared to standard MIR channels IC is used to optimize the channels frequencies and widths of a FIR radiometer A high DFS is reached with only a few channels of an optimized FIR radiometer