Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Type de ressource
  • Article de revue
Année de publication
  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2023

Résultats 75 ressources

Date décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
Résumés
  • Thompson, H. D., Thériault, J. M., Déry, S. J., Stewart, R. E., Boisvert, D., Rickard, L., Leroux, N. R., Colli, M., & Vionnet, V. (2023). Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS). Earth System Science Data, 15(12), 5785–5806. https://doi.org/10.5194/essd-15-5785-2023

    Abstract. The amount and the phase of cold-season precipitation accumulating in the upper Saint John River (SJR) basin are critical factors in determining spring runoff, ice jams, and flooding. To study the impact of winter and spring storms on the snowpack in the upper SJR basin, the Saint John River Experiment on Cold Season Storms (SAJESS) was conducted during winter–spring 2020–2021. Here, we provide an overview of the SAJESS study area, field campaign, and data collected. The upper SJR basin represents 41 % of the entire SJR watershed and encompasses parts of the US state of Maine and the Canadian provinces of Quebec and New Brunswick. In early December 2020, meteorological instruments were co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick. This included a separate weather station for measuring standard meteorological variables, an optical disdrometer, and a micro rain radar. This instrumentation was augmented during an intensive observation period that also included upper-air soundings, surface weather observations, a multi-angle snowflake camera, and macrophotography of solid hydrometeors throughout March and April 2021. During the study, the region experienced a lower-than-average snowpack that peaked at ∼ 65 cm, with a total of 287 mm of precipitation (liquid-equivalent) falling between December 2020 and April 2021, a 21 % lower amount of precipitation than the climatological normal. Observers were present for 13 storms during which they conducted 183 h of precipitation observations and took more than 4000 images of hydrometeors. The inclusion of local volunteers and schools provided an additional 1700 measurements of precipitation amounts across the area. The resulting datasets are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2023). We also include a synopsis of the data management plan and a brief assessment of the rewards and challenges of conducting the field campaign and utilizing community volunteers for citizen science.

    Consulter sur essd.copernicus.org
  • Zhu, S., Tang, J., Zhou, X., Li, P., Liu, Z., Zhang, C., Zou, Z., Li, T., & Peng, C. (2023). Research progress, challenges, and prospects of PM2.5 concentration estimation using satellite data. Environmental Reviews, 31(4), 605–631. https://doi.org/10.1139/er-2022-0125

    Satellite data are vital for understanding the large-scale spatial distribution of particulate matter (PM 2.5 ) due to their low cost, wide coverage, and all-weather capability. Estimation of PM 2.5 using satellite aerosol optical depth (AOD) products is a popular method. In this paper, we review the PM 2.5 estimation process based on satellite AOD data in terms of data sources (i.e., inversion algorithms, data sets, and interpolation methods), estimation models (i.e., statistical regression, chemical transport models, machine learning, and combinatorial analysis), and modeling validation (i.e., four types of cross-validation (CV) methods). We found that the accuracy of time-based CV is lower than others. We found significant differences in modeling accuracy between different seasons ( p < 0.01) and different spatial resolutions ( p < 0.01). We explain these phenomena in this article. Finally, we summarize the research process, present challenges, and future directions in this field. We opine that low-cost mobile devices combined with transfer learning or hybrid modeling offer research opportunities in areas with limited PM 2.5 monitoring stations and historical PM 2.5 estimation. These methods can be a good choice for air pollution estimation in developing countries. The purpose of this study is to provide a basic framework for future researchers to conduct relevant research, enabling them to understand current research progress and future research directions.

    Consulter sur cdnsciencepub.com
  • Gorenstein, I., Wainer, I., Pausata, F. S. R., Prado, L. F., Khodri, M., & Dias, P. L. S. (2023). A 50-year cycle of sea surface temperature regulates decadal precipitation in the tropical and South Atlantic region. Communications Earth & Environment, 4(1), 427. https://doi.org/10.1038/s43247-023-01073-0

    Abstract Northeast Brazil and Western Africa are two regions geographically separated by the Atlantic Ocean, both home to vulnerable populations living in semi-arid areas. Atlantic Ocean modes of variability and their interactions with the atmosphere are the main drivers of decadal precipitation in these Atlantic Ocean coastal areas. How these low-frequency modes of variability evolve and interact with each other is key to understanding and predicting decadal precipitation. Here we use the Self-Organizing Maps neural network with different variables to unravel causality between the Atlantic modes of variability and their interactions with the atmosphere. Our study finds an 82% (p<0.05) anti-correlation between decadal rainfall in Northeast Brazil and Western Africa from 1979 to 2005. We also find three multi-decadal cycles: 1870-1920, 1920-1970, and 1970-2019 (satellite era), pointing to a 50-year periodicity governing the sea surface temperature anomalies of Tropical and South Atlantic. Our results demonstrate how Northeast Brazil and Western Africa rainfall anti-correlation was formed in the satellite era and how it might be part of a 50-year cycle from the Tropical and South Atlantic decadal variability.

    Consulter sur www.nature.com
  • Sadoine, M. L., Smargiassi, A., Liu, Y., Gachon, P., Fournier, M., Dueymes, G., Namuganga, J. F., Dorsey, G., Nasri, B., & Zinszer, K. (2023). Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda. International Journal of Environmental Research and Public Health, 20(22), 7042. https://doi.org/10.3390/ijerph20227042

    Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.

    Consulter sur www.mdpi.com
  • Thériault, J. M., Leroux, N. R., Tchuem Tchuente, O., & Stewart, R. E. (2023). Characteristics of Rain-Snow Transitions Over the Canadian Rockies and their Changes in Warmer Climate Conditions. Atmosphere-Ocean, 61(5), 352–367. https://doi.org/10.1080/07055900.2023.2251938
    Consulter sur www.tandfonline.com
  • Zhu, Q., Chen, H., Peng, C., Liu, J., Piao, S., He, J.-S., Wang, S., Zhao, X., Zhang, J., Fang, X., Jin, J., Yang, Q.-E., Ren, L., & Wang, Y. (2023). An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 14(1), 6406. https://doi.org/10.1038/s41467-023-42099-4

    Abstract Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO 2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.

    Consulter sur www.nature.com
  • Moreno-Ibáñez, M., Laprise, R., & Gachon, P. (2023). Assessment of simulations of a polar low with the Canadian Regional Climate Model. PLOS ONE, 18(10), e0292250. https://doi.org/10.1371/journal.pone.0292250

    Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.

    Consulter sur dx.plos.org
  • Wolf, A., Ersek, V., Braun, T., French, A. D., McGee, D., Bernasconi, S. M., Skiba, V., Griffiths, M. L., Johnson, K. R., Fohlmeister, J., Breitenbach, S. F. M., Pausata, F. S. R., Tabor, C. R., Longman, J., Roberts, W. H. G., Chandan, D., Peltier, W. R., Salzmann, U., Limbert, D., … Trinh, A. D. (2023). Deciphering local and regional hydroclimate resolves contradicting evidence on the Asian monsoon evolution. Nature Communications, 14(1), 5697. https://doi.org/10.1038/s41467-023-41373-9

    Abstract The winter and summer monsoons in Southeast Asia are important but highly variable sources of rainfall. Current understanding of the winter monsoon is limited by conflicting proxy observations, resulting from the decoupling of regional atmospheric circulation patterns and local rainfall dynamics. These signals are difficult to decipher in paleoclimate reconstructions. Here, we present a winter monsoon speleothem record from Southeast Asia covering the Holocene and find that winter and summer rainfall changed synchronously, forced by changes in the Pacific and Indian Oceans. In contrast, regional atmospheric circulation shows an inverse relation between winter and summer controlled by seasonal insolation over the Northern Hemisphere. We show that disentangling the local and regional signal in paleoclimate reconstructions is crucial in understanding and projecting winter and summer monsoon variability in Southeast Asia.

    Consulter sur www.nature.com
  • Liu, H., Li, P., Peng, C., Liu, C., Zhou, X., Deng, Z., Zhang, C., & Liu, Z. (2023). Application of climate change scenarios in the simulation of forest ecosystems: an overview. Environmental Reviews, 31(3), 565–588. https://doi.org/10.1139/er-2022-0111

    Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.

    Consulter sur cdnsciencepub.com
  • Ito, A., Li, T., Qin, Z., Melton, J. R., Tian, H., Kleinen, T., Zhang, W., Zhang, Z., Joos, F., Ciais, P., Hopcroft, P. O., Beerling, D. J., Liu, X., Zhuang, Q., Zhu, Q., Peng, C., Chang, K. ‐Y., Fluet‐Chouinard, E., McNicol, G., … Zhu, Q. (2023). Cold‐Season Methane Fluxes Simulated by GCP‐CH4 Models. Geophysical Research Letters, 50(14), e2023GL103037. https://doi.org/10.1029/2023GL103037

    Abstract Cold‐season methane (CH 4 ) emissions may be poorly constrained in wetland models. We examined cold‐season CH 4 emissions simulated by 16 models participating in the Global Carbon Project model intercomparison and analyzed temporal and spatial patterns in simulation results using prescribed inundation data for 2000–2020. Estimated annual CH 4 emissions from northern (>60°N) wetlands averaged 10.0 ± 5.5 Tg CH 4  yr −1 . While summer CH 4 emissions were well simulated compared to in‐situ flux measurement observations, the models underestimated CH 4 during September to May relative to annual total (27 ± 9%, compared to 45% in observations) and substantially in the months with subzero air temperatures (5 ± 5%, compared to 27% in observations). Because of winter warming, nevertheless, the contribution of cold‐season emissions was simulated to increase at 0.4 ± 0.8% decade −1 . Different parameterizations of processes, for example, freezing–thawing and snow insulation, caused conspicuous variability among models, implying the necessity of model refinement. , Plain Language Summary Wetlands in the northern high latitudes are a major source of methane (CH 4 ) to the atmosphere, mainly during the warm season. Previously, models have assumed that cold‐season CH 4 emissions are low, but recent observations suggest high‐latitude wetlands can be substantial sources even in winter. We compared CH 4 emissions simulated by 16 state‐of‐the‐art wetland models, participating in a model intercomparison project with a focus on the cold‐season in northern wetlands. The model simulations indicated that nearly one third of annual emissions were simulated to occur from September to May, and CH 4 emissions to the atmosphere were not negligible even under freezing air temperatures, although the results differed greatly among the models. However, field studies suggest cold‐season emissions account for an even larger fraction of annual emissions. These results highlight the contribution of cold‐season emissions to the annual CH 4 budget, which future climatic warming is expected to affect severely, and they also show that simulations of cold‐season CH 4 emissions from wetlands need to be improved. , Key Points Cold‐season methane (CH 4 ) emissions simulated by 16 Global Carbon Project‐CH 4 wetland models were analyzed Most models underestimate the cold‐season emissions in comparison with observational data Further model improvement by including cold‐season processes is required to reduce the model bias and uncertainty

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Llerena, A., Gachon, P., & Laprise, R. (2023). Precipitation Extremes and Their Links with Regional and Local Temperatures: A Case Study over the Ottawa River Basin, Canada. Atmosphere, 14(7), 1130. https://doi.org/10.3390/atmos14071130

    In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.

    Consulter sur www.mdpi.com
  • Ricard, S., Lucas-Picher, P., Thiboult, A., & Anctil, F. (2023). Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations. Hydrology and Earth System Sciences, 27(12), 2375–2395. https://doi.org/10.5194/hess-27-2375-2023

    Abstract. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. This alternative approach is designed by combining asynchronous hydroclimatic modelling and quantile perturbation applied to streamflow observations. Calibration is run by forcing hydrologic models with raw climate model outputs using an objective function that excludes the day-to-day temporal correlation between simulated and observed hydrographs. The resulting hydrologic scenarios provide useful and reliable information considering that they (1) preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascade despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four sub-catchments of the Chaudière River, Canada, using nine North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) simulations and a pool of lumped conceptual hydrologic models. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. They also highlight the sensibility of the proposed workflow to strong biases affecting raw climate model outputs, frequently causing outlying projections of the hydrologic regime. Inappropriate forcing climate simulations were however successfully identified (and excluded) using the performance of the simulated hydrologic response as a ranking criterion. Results finally suggest that further works should be conducted to confirm the reliability of the proposed workflow to assess the impact of climate change on high- and low-flow events.

    Consulter sur hess.copernicus.org
  • Tiwari, S., Ramos, R. D., Pausata, F. S. R., LeGrande, A. N., Griffiths, M. L., Beltrami, H., Wainer, I., De Vernal, A., Litchmore, D. T., Chandan, D., Peltier, W. R., & Tabor, C. R. (2023). On the Remote Impacts of Mid‐Holocene Saharan Vegetation on South American Hydroclimate: A Modeling Intercomparison. Geophysical Research Letters, 50(12), e2022GL101974. https://doi.org/10.1029/2022GL101974

    Abstract Proxy reconstructions from the mid‐Holocene (MH: 6,000 years ago) indicate an intensification of the West African Monsoon and a weakening of the South American Monsoon, primarily resulting from orbitally‐driven insolation changes. However, model studies that account for MH orbital configurations and greenhouse gas concentrations can only partially reproduce these changes. Most model studies do not account for the remarkable vegetation changes that occurred during the MH, in particular over the Sahara, precluding realistic simulations of the period. Here, we study precipitation changes over northern Africa and South America using four fully coupled global climate models by accounting for the Saharan greening. Incorporating the Green Sahara amplifies orbitally‐driven changes over both regions, and leads to an improvement in proxy‐model agreement. Our work highlights the local and remote impacts of vegetation and the importance of considering vegetation changes in the Sahara when studying and modeling global climate. , Plain Language Summary Paleoclimate modeling offers a way to test the ability of climate models to detect climate change outside the envelope of historical climatic variability. The mid‐Holocene (MH: 6,000 years ago) is a key interval for paleoclimate studies, as the Northern Hemisphere received greater summer‐time insolation and experienced stronger monsoons than today. Due to a stronger MH West African Monsoon, the Saharan region received enough rainfall to be able to host vegetation. The vegetation changes in the Sahara affected not only the local climate but also far‐afield locations through teleconnections in the global climate system. In this study, we simulate the MH climate using four climate models, each with two types of simulations—with and without the Green Sahara. We show that simulations with the Green Sahara capture greater drying over the South American continent than the simulations which only account for changes in orbital forcing and greenhouse gas concentrations. The simulations with the Green Sahara are more in line with proxy reconstructions, lending further support to incorporating vegetation changes as a necessary boundary condition to simulate the MH climate realistically. , Key Points We simulate the mid‐Holocene with and without the Green Sahara using four fully coupled global climate models The mid‐Holocene simulation with the Green Sahara shows intensification of orbitally‐driven changes in precipitation over northern Africa and South America Incorporation of the Green Sahara leads to greater proxy‐model agreement over both northern Africa and South America

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Lauer, A., Pausata, F. S. R., Leroyer, S., & Argueso, D. (2023). Effect of urban heat island mitigation strategies on precipitation and temperature in Montreal, Canada: Case studies. PLOS Climate, 2(6), e0000196. https://doi.org/10.1371/journal.pclm.0000196

    High-resolution numerical weather prediction experiments using the Global Environmental Multiscale (GEM) model at a 250-m horizontal resolution are used to investigate the effect of the urban land-use on 2-m surface air temperature, thermal comfort, and rainfall over the Montreal (Canada) area. We focus on two different events of high temperatures lasting 2–3 days followed by intense rainfall: one is a large-scale synoptic system that crosses Montreal at night and the other is an afternoon squall line. Our model shows an overall good performance in adequately capturing the surface air temperature, dew-point temperature and rainfall during the events, although the precipitation pattern seems to be slightly blocked upwind of the city. Sensitivity experiments with different land use scenarios were conducted. Replacing all urban surfaces by low vegetation showed an increase of human comfort, lowering the heat index during the night between 2° and 6°C. Increasing the albedo of urban surfaces led to an improvement of comfort of up to 1°C during daytime, whereas adding street-level low vegetation had an improvement of comfort throughout the day of up to 0.5°C in the downtown area. With respect to precipitation, significant differences are only seen for the squall line event, for which removing the city modifies the precipitation pattern. For the large-scale synoptic system, the presence of the city does not seem to impact precipitation. These findings offer insight on the effects of urban morphology on the near-surface atmospheric conditions.

    Consulter sur dx.plos.org
  • Gousse-Lessard, A.-S., Gachon, P., Lessard, L., Vermeulen, V., Boivin, M., Maltais, D., Landaverde, E., Généreux, M., Motulsky, B., & Le Beller, J. (2023). Intersectoral approaches: the key to mitigating psychosocial and health consequences of disasters and systemic risks. Disaster Prevention and Management: An International Journal, 32(1), 74–99. https://doi.org/10.1108/DPM-09-2022-0190

    Purpose The current pandemic and ongoing climate risks highlight the limited capacity of various systems, including health and social ones, to respond to population-scale and long-term threats. Practices to reduce the impacts on the health and well-being of populations must evolve from a reactive mode to preventive, proactive and concerted actions beginning at individual and community levels. Experiences and lessons learned from the pandemic will help to better prevent and reduce the psychosocial impacts of floods, or other hydroclimatic risks, in a climate change context. Design/methodology/approach The present paper first describes the complexity and the challenges associated with climate change and systemic risks. It also presents some systemic frameworks of mental health determinants, and provides an overview of the different types of psychosocial impacts of disasters. Through various Quebec case studies and using lessons learned from past and recent flood-related events, recommendations are made on how to better integrate individual and community factors in disaster response. Findings Results highlight the fact that people who have been affected by the events are significantly more likely to have mental health problems than those not exposed to flooding. They further demonstrate the adverse and long-term effects of floods on psychological health, notably stemming from indirect stressors at the community and institutional levels. Different strategies are proposed from individual-centered to systemic approaches, in putting forward the advantages from intersectoral and multirisk researches and interventions. Originality/value The establishment of an intersectoral flood network, namely the InterSectoral Flood Network of Québec (RIISQ), is presented as an interesting avenue to foster interdisciplinary collaboration and a systemic view of flood risks. Intersectoral work is proving to be a major issue in the management of systemic risks, and should concern communities, health and mental health professionals, and the various levels of governance. As climate change is called upon to lead to more and more systemic risks, close collaboration between all the areas concerned with the management of the factors of vulnerability and exposure of populations will be necessary to respond effectively to damages and impacts (direct and indirect) linked to new meteorological and compound hazards. This means as well to better integrate the communication managers into the risk management team.

    Consulter sur www.emerald.com
  • Moreno-Ibáñez, M., Laprise, R., & Gachon, P. (2023). Analysis of the Development Mechanisms of a Polar Low over the Norwegian Sea Simulated with the Canadian Regional Climate Model. Atmosphere, 14(6), 998. https://doi.org/10.3390/atmos14060998

    Polar lows (PLs) are maritime mesoscale cyclones associated with severe weather. They develop during marine cold air outbreaks near coastlines and the sea ice edge. Unfortunately, our knowledge about the mechanisms leading to PL development is still incomplete. This study aims to provide a detailed analysis of the development mechanisms of a PL that formed over the Norwegian Sea on 25 March 2019 using the output of a simulation with the sixth version of the Canadian Regional Climate Model (CRCM6/GEM4), a convection-permitting model. First, the life cycle of the PL is described and the vertical wind shear environment is analysed. Then, the horizontal wind divergence and the baroclinic conversion term are computed, and a surface pressure tendency equation is developed. In addition, the roles of atmospheric static stability, latent heat release, and surface heat and moisture fluxes are explored. The results show that the PL developed in a forward-shear environment and that moist baroclinic instability played a major role in its genesis and intensification. Baroclinic instability was initially only present at low levels of the atmosphere, but later extended upward until it reached the mid-troposphere. Whereas the latent heat of condensation and the surface heat fluxes also contributed to the development of the PL, convective available potential energy and barotropic conversion do not seem to have played a major role in its intensification. In conclusion, this study shows that a convection-permitting model simulation is a powerful tool to study the details of the structure of PLs, as well as their development mechanisms.

    Consulter sur www.mdpi.com
  • Deng, L., Shangguan, Z., Bell, S. M., Soromotin, A. V., Peng, C., An, S., Wu, X., Xu, X., Wang, K., Li, J., Tang, Z., Yan, W., Zhang, F., Li, J., Wu, J., & Kuzyakov, Y. (2023). Carbon in Chinese grasslands: meta-analysis and theory of grazing effects. Carbon Research, 2(1), 19. https://doi.org/10.1007/s44246-023-00051-7

    Abstract Globally, livestock grazing is an important management factor influencing soil degradation, soil health and carbon (C) stocks of grassland ecosystems. However, the effects of grassland types, grazing intensity and grazing duration on C stocks are unclear across large geographic scales. To provide a more comprehensive assessment of how grazing drives ecosystem C stocks in grasslands, we compiled and analyzed data from 306 studies featuring four grassland types across China: desert steppes, typical steppes, meadow steppes and alpine steppes. Light grazing was the best management practice for desert steppes (< 2 sheep ha −1 ) and typical steppes (3 to 4 sheep ha −1 ), whereas medium grazing pressure was optimal for meadow steppes (5 to 6 sheep ha −1 ) and alpine steppes (7 to 8 sheep ha −1 ) leading to the highest ecosystem C stocks under grazing. Plant biomass (desert steppes) and soil C stocks (meadow steppes) increased under light or medium grazing, confirming the ‘ intermediate disturbance hypothesis ’. Heavy grazing decreased all C stocks regardless of grassland ecosystem types, approximately 1.4 Mg ha −1 per year for the whole ecosystem. The regrowth and regeneration of grasslands in response to grazing intensity (i.e., grazing optimization ) depended on grassland types and grazing duration. In conclusion, grassland grazing is a double-edged sword. On the one hand, proper management (light or medium grazing) can maintain and even increase C stocks above- and belowground, and increase the harvested livestock products from grasslands. On the other hand, human-induced overgrazing can lead to rapid degradation of vegetation and soils, resulting in significant carbon loss and requiring long-term recovery. Grazing regimes (i.e., intensity and duration applied) must consider specific grassland characteristics to ensure stable productivity rates and optimal impacts on ecosystem C stocks. Graphical Abstract

    Consulter sur link.springer.com
  • Alizadeh, M. R., Abatzoglou, J. T., Adamowski, J., Modaresi Rad, A., AghaKouchak, A., Pausata, F. S. R., & Sadegh, M. (2023). Elevation-dependent intensification of fire danger in the western United States. Nature Communications, 14(1), 1773. https://doi.org/10.1038/s41467-023-37311-4

    Abstract Studies have identified elevation-dependent warming trends, but investigations of such trends in fire danger are absent in the literature. Here, we demonstrate that while there have been widespread increases in fire danger across the mountainous western US from 1979 to 2020, trends were most acute at high-elevation regions above 3000 m. The greatest increase in the number of days conducive to large fires occurred at 2500–3000 m, adding 63 critical fire danger days between 1979 and 2020. This includes 22 critical fire danger days occurring outside the warm season (May–September). Furthermore, our findings indicate increased elevational synchronization of fire danger in western US mountains, which can facilitate increased geographic opportunities for ignitions and fire spread that further complicate fire management operations. We hypothesize that several physical mechanisms underpinned the observed trends, including elevationally disparate impacts of earlier snowmelt, intensified land-atmosphere feedbacks, irrigation, and aerosols, in addition to widespread warming/drying.

    Consulter sur www.nature.com
  • Stewart, R. E., Liu, Z., Thériault, J. M., & Ruman, C. J. (2023). The Occurrence of Near‐0°C Surface Air Temperatures in the Current and Pseudo‐Global Warming Future Over Southern Canada. Journal of Geophysical Research: Atmospheres, 128(6), e2022JD037981. https://doi.org/10.1029/2022JD037981

    Abstract Temperatures near 0°C represent a critical threshold for many environmental processes and socio‐economic activities. This study examines surface air temperatures ( T ) near 0°C (−2°C ≤  T  ≤ 2°C) across much of southern Canada over a 13 year period (October 2000–September 2013). It utilized hourly data from 39 weather stations and from 4‐km resolution Weather Research and Forecasting model simulations that were both a retrospective simulation as well as a pseudo‐global warming simulation applicable near the end of the 21st century. Average annual occurrences of near‐0°C conditions increase by a relatively small amount of 5.1% from 985 hr in the current climate to 1,035 hr within the future one. Near‐0°C occurrences with precipitation vary from <5% to approximately 50% of these values. Near‐0°C occurrences are sometimes higher than values of neighboring temperatures. These near‐0°C peaks in temperature distributions can occur in both the current and future climate, in only one, or in neither. Only 4.3% of southern Canada is not associated with a near‐0°C peak and 65.8% is associated with a near‐0°C peak in both climates. It is inferred that latent heat exchanges from the melting and freezing of, for example, precipitation and the snowpack contribute significantly to some of these findings. , Plain Language Summary Our changing climate is spurring the development of huge efforts to improve resiliency. For many regions of the world, these efforts must account for potential changes in near‐0°C conditions within which both melting and freezing can occur and the accompanying latent heat exchanges can push air temperature toward 0°C. This article focuses on the occurrence of near‐0°C surface temperatures across southern Canada through an examination of observational and model information including projections in a future warmer (average 6.1°C increase) climate near the end of the 21st century. Average annual occurrences of near‐0°C conditions increase by a relatively small amount of 5.1% in the future climate and highest values continue to be along the Pacific coast or within the Western Cordillera and lowest values continue to be within central and northern areas. Near‐0°C occurrences are often higher than those of neighboring temperatures in the present climate and some of these elevated occurrences persist into the future one despite dramatic warming. It is inferred that latent heat exchanges from the melting and freezing of precipitation and snowcover contribute to these findings. , Key Points Near‐0°C surface air temperatures were examined over southern Canada using retrospective and pseudo‐global warming simulations Overall average occurrences increase slightly and their spatial patterns are largely maintained in the warmer climate Near‐0°C occurrences sometimes exceed those of neighboring temperatures and this feature often persists despite dramatic warming

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Casas-Ruiz, J. P., Bodmer, P., Bona, K. A., Butman, D., Couturier, M., Emilson, E. J. S., Finlay, K., Genet, H., Hayes, D., Karlsson, J., Paré, D., Peng, C., Striegl, R., Webb, J., Wei, X., Ziegler, S. E., & Del Giorgio, P. A. (2023). Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange. Nature Communications, 14(1), 1571. https://doi.org/10.1038/s41467-023-37232-2

    Abstract In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.

    Consulter sur www.nature.com
  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 07/06/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (1)
  • Boudreault, Mathieu (3)
  • De Vernal, Anne (5)
  • Gachon, Philippe (7)
  • Grenier, Patrick (1)
  • Lucas-Picher, Philippe (3)
  • Pausata, Francesco S.R. (10)
  • Peng, Changhui (37)
  • Thériault, Julie M. (8)

Type de ressource

  • Article de revue

Année de publication

  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2023

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web