Votre recherche
Résultats 854 ressources
-
Abstract The increasing atmospheric nitrous oxide (N 2 O) concentration stems from the development of agriculture. However, N 2 O emissions from global rice‐based ecosystems have not been explicitly and systematically quantified. Therefore, this study aims to estimate the spatiotemporal magnitudes of the N 2 O emissions from global rice‐based ecosystems and determine different contribution factors by improving a process‐based biogeochemical model, TRIPLEX‐GHG v2.0. Model validation suggested that the modeled N 2 O agreed well with field observations under varying management practices at daily, seasonal, and annual steps. Simulated N 2 O emissions from global rice‐based ecosystems exhibited significant increasing trends from 0.026 ± 0.0013 to 0.18 ± 0.003 TgN yr −1 from 1910 to 2020, with ∼69.5% emissions attributed to the rice‐growing seasons. Irrigated rice ecosystems accounted for a majority of global rice N 2 O emissions (∼76.9%) because of their higher N 2 O emission rates than rainfed systems. Regarding spatial analysis, Southern China, Northeast India, and Southeast Asia are hotspots for rice‐based N 2 O emissions. Experimental scenarios revealed that N fertilizer is the largest global rice‐N 2 O source, especially since the 1960s (0.047 ± 0.010 TgN yr −1 , 35.24%), while the impact of expanded irrigation plays a minor role. Overall, this study provides a better understanding of the rice‐based ecosystem in the global agricultural N 2 O budget; further, it quantitively demonstrated the central role of N fertilizer in rice‐based N 2 O emissions by including rice crop calendars, covering non‐rice growing seasons, and differentiating the effects of various water regimes and input N forms. Our findings emphasize the significance of co‐management of N fertilizer and water regimes in reducing the net climate impact of global rice cultivation. , Plain Language Summary Nitrous oxide (N 2 O) is a greenhouse gas with ∼300 times greater effect on climate warming than carbon dioxide. Global croplands represent the largest source of anthropogenic N 2 O emissions. However, the contribution of global rice‐based cropping ecosystems to the N 2 O budget remains largely uncertain because of inconsistent observed results. Inspired by the increasing availability of reliable global data sets, we improved and applied a process‐based biogeochemical model by describing the dynamics of various microbial activities to simulate N 2 O emissions from rice‐based ecosystems on a global scale. Model simulations showed that 0.18 million tons of N 2 O‐N were emitted from global rice‐based N 2 O emissions in the 2010s, which was five times larger than that in the 1910s. In the context of regional contribution, southern China, northern India, and Southeast Asia are responsible for more than 80% of the total emissions during 1910–2020. Results suggest that N fertilizer is the most important rice‐N 2 O source quantitively and that increasing irrigation exerts a buffering effect. This study confirmed the potential mitigating effect of co‐managing N fertilizer and irrigation on mitigating rice‐based N 2 O emissions globally. , Key Points N 2 O emissions from global rice‐based ecosystem increased from 0.026 to 0.18 TgN yr −1 between 1910 and 2020 Irrigated rice‐based ecosystems showed larger N 2 O fluxes than rainfed rice globally due to higher N fertilizer use and frequent aerations N fertilizer represents the largest N 2 O source, and co‐management of N fertilizer and flooding regimes is important for mitigation
-
Abstract Process‐based land surface models are important tools for estimating global wetland methane (CH 4 ) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site‐level patterns of freshwater wetland CH 4 fluxes (FCH 4 ) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model‐observation disagreements are mainly at multi‐day time scales (<15 days); (b) most of the models can capture the CH 4 variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH 4 production). Our evaluation suggests the need to accurately replicate FCH 4 variability, especially at short time scales, in future wetland CH 4 model developments. , Plain Language Summary Land surface models are useful tools to estimate and predict wetland methane (CH 4 ) flux but there is no evaluation of modeled CH 4 flux error at different time scales. Here we use a statistical approach and observations from eddy covariance sites to evaluate the performance of seven wetland models for different wetland types. The results suggest models have captured CH 4 flux variability at monthly or seasonal time scales for boreal and Arctic tundra wetlands but failed to capture the observed seasonal variability for temperate and tropical/subtropical wetlands. The analysis suggests that improving modeled flux at short time scale is important for future model development. , Key Points Significant model‐observation disagreements were found at multi‐day and weekly time scales (<15 days) Models captured variability at monthly and seasonal time (42–142 days) scales for boreal and Arctic tundra sites but not for temperate and tropical sites The model errors show that biases at multi‐day time scales may contribute to persistent systematic biases on longer time scales
-
Abstract In forest ecosystems, the majority of methane (CH4) research focuses on soils, whereas tree stem CH4 flux and driving factors remain poorly understood. We measured the in situ stem CH4 flux using the static chamber–gas chromatography method at different heights in two poplar (Populus spp.) forests with separate soil textures. We evaluated the relationship between stem CH4 fluxes and environmental factors with linear mixed models and estimated the tree CH4 emission rate at the stand level. Our results showed that poplar stems were a net source of atmospheric CH4. The mean stem CH4 emission rates were 97.51 ± 6.21 μg·m−2·h−1 in Sihong and 67.04 ± 5.64 μg·m−2·h−1 in Dongtai. The stem CH4 emission rate in Sihong with clay loam soils was significantly higher (P < 0.001) than that in Dongtai with sandy loam soils. The stem CH4 emission rate also showed a seasonal variation, minimum in winter and maximum in summer. The stem CH4 emission rate generally decreased with increasing sampling height. Although the differences in CH4 emission rates between stem heights were significant in the annual averages, these differences were driven by differences observed in the summer. Stem CH4 emission rates were significantly and positively correlated with air temperature (P < 0.001), relative humidity (P < 0.001), soil water content (P < 0.001) and soil CH4 flux (P < 0.001). At these sites, the soil emitted CH4 to the atmosphere in summer (mainly from June to September) but absorbed CH4 from the atmosphere during the other season. At the stand level, tree CH4 emissions accounted for 2–35.4% of soil CH4 uptake. Overall, tree stem CH4 efflux could be an important component of the forest CH4 budget. Therefore, it is necessary to conduct more in situ monitoring of stem CH4 flux to accurately estimate the CH4 budget in the future.
-
Abstract Based on the analysis of fish otolith assemblages from surface sediments of the Lomonosov Ridge (Arctic Ocean), we demonstrate that the very low Holocene sedimentation rates and winnowing of fine sediments result in the mixing of the whole Holocene populations at the sediment surface. Specimens from the Marine Isotope Stage (MIS) 3 or older could even be recovered in the surface due to a sedimentary hiatus at some locations in the central Arctic during the last glacial maximum. Two examples illustrate that 14 C‐stratigraphies from planktic foraminifers in underlying cored sediments reflect the mixing between Holocene and MIS 3 or older populations, thus invalidating continuous age‐depth inferences based on 14 C ages. Hence, much caution is required when attempting to set paleoceanographic reconstructions based on 14 C chronologies in a low sediment accumulation rate environment such as the central Arctic Ocean. Already published paleoceanographic reconstructions from this area might thus require some revisions. , Plain Language Summary Radiocarbon ages of microfossils (fish otoliths) collected at the surface sediments of the Lomonosov Ridge, in the central Arctic Ocean, indicate that all populations that developed during the present interglacial are mixed within the approximately 1 cm‐thick surface layer. Fossil assemblages occasionally include specimens from older warm intervals. The stacking of fossil spanning thousands of years is due to the very low sediment accumulation rate of the area, the post‐depositional winnowing of fine sediments and mixing by benthic organisms. These process result in the impossibility to document the faunal evolution in the central Arctic Ocean during the last few tens of thousands of years using such fossils. , Key Points Fish otolith radiocarbon age distributions in surface sediments illustrate the mixing of Holocene and pre‐Last Glacial Maximum populations Low sedimentation rates, particle winnowing and sedimentary gaps may impact microfossil mixing and 14 C chronologies Published paleoclimate/paleoceanographic records from similar sites might thus require some reinterpretation
-
Abstract. The changing Arctic climate is creating increased economic, transportation, and recreational activities requiring reliable and relevant weather information. However, the Canadian Arctic is sparsely observed, and processes governing weather systems in the Arctic are not well understood. There is a recognized lack of meteorological data to characterize the Arctic atmosphere for operational forecasting and to support process studies, satellite calibration/validation, search and rescue operations (which are increasing in the region), high-impact weather (HIW) detection and prediction, and numerical weather prediction (NWP) model verification and evaluation. To address this need, Environment and Climate Change Canada commissioned two supersites, one in Iqaluit (63.74∘ N, 68.51∘ W) in September 2015 and the other in Whitehorse (60.71∘ N, 135.07∘ W) in November 2017 as part of the Canadian Arctic Weather Science (CAWS) project. The primary goals of CAWS are to provide enhanced meteorological observations in the Canadian Arctic for HIW nowcasting (short-range forecast) and NWP model verification, evaluation, and process studies and to provide recommendations on the optimal cost-effective observing system for the Canadian Arctic. Both sites are in provincial/territorial capitals and are economic hubs for the region; they also act as transportation gateways to the north and are in the path of several common Arctic storm tracks. The supersites are located at or next to major airports and existing Meteorological Service of Canada ground-based weather stations that provide standard meteorological surface observations and upper-air radiosonde observations; they are also uniquely situated in close proximity to frequent overpasses by polar-orbiting satellites. The suite of in situ and remote sensing instruments at each site is completely automated (no on-site operator) and operates continuously in all weather conditions, providing near-real-time data to operational weather forecasters, the public, and researchers via obrs.ca. The two sites have similar instruments, including mobile Doppler weather radars, multiple vertically profiling and/or scanning lidars (Doppler, ceilometer, water vapour), optical disdrometers, precipitation gauges in different shielded configurations, present weather sensors, fog monitoring devices, radiation flux sensors, and other meteorological instruments. Details on the two supersites, the suites of instruments deployed, the data collection methods, and example case studies of HIW events are discussed. CAWS data are publicly accessible via the Canadian Government Open Data Portal (https://doi.org/10.18164/ff771396-b22c-4bc3-844d-38fc697049e9, Mariani et al., 2022a, and https://doi.org/10.18164/d92ed3cf-4ba0-4473-beec-357ec45b0e78, Mariani et al., 2022b); this dataset is being used to improve our understanding of synoptic and fine-scale meteorological processes in the Arctic and sub-Arctic, including HIW detection and prediction and NWP verification, assimilation, and processes.
-
Abstract. Various methods are available for assessing uncertainties in climate impact studies. Among such methods, model weighting by expert elicitation is a practical way to provide a weighted ensemble of models for specific real-world impacts. The aim is to decrease the influence of improbable models in the results and easing the decision-making process. In this study both climate and hydrological models are analysed, and the result of a research experiment is presented using model weighting with the participation of six climate model experts and six hydrological model experts. For the experiment, seven climate models are a priori selected from a larger EURO-CORDEX (Coordinated Regional Downscaling Experiment – European Domain) ensemble of climate models, and three different hydrological models are chosen for each of the three European river basins. The model weighting is based on qualitative evaluation by the experts for each of the selected models based on a training material that describes the overall model structure and literature about climate models and the performance of hydrological models for the present period. The expert elicitation process follows a three-stage approach, with two individual rounds of elicitation of probabilities and a final group consensus, where the experts are separated into two different community groups: a climate and a hydrological modeller group. The dialogue reveals that under the conditions of the study, most climate modellers prefer the equal weighting of ensemble members, whereas hydrological-impact modellers in general are more open for assigning weights to different models in a multi-model ensemble, based on model performance and model structure. Climate experts are more open to exclude models, if obviously flawed, than to put weights on selected models in a relatively small ensemble. The study shows that expert elicitation can be an efficient way to assign weights to different hydrological models and thereby reduce the uncertainty in climate impact. However, for the climate model ensemble, comprising seven models, the elicitation in the format of this study could only re-establish a uniform weight between climate models.
-
The Australian Alps are the highest mountain range in Australia, which are important for biodiversity, energy generation and winter tourism. Significant increases in temperature in the past decades has had a huge impact on biodiversity and ecosystem in this region. In this study, observed temperature is used to assess how temperature changed over the Australian Alps and surrounding areas. We also use outputs from two generations of NARCliM (NSW and Australian Regional Climate Modelling) to investigate spatial and temporal variation of future changes in temperature and its extremes. The results show temperature increases faster for the Australian Alps than the surrounding areas, with clear spatial and temporal variation. The changes in temperature and its extremes are found to be strongly correlated with changes in albedo, which suggests faster warming in cool season might be dominated by decrease in albedo resulting from future changes in natural snowfall and snowpack. The warming induced reduction in future snow cover in the Australian Alps will have a significant impact on this region.
-
Abstract Inconsistencies between Holocene climate reconstructions and numerical model simulations question the robustness of climate models and proxy temperature records. Climate reconstructions suggest an early-middle Holocene Thermal Maximum (HTM) followed by gradual cooling, whereas climate models indicate continuous warming. This discrepancy either implies seasonal biases in proxy-based climate reconstructions, or that the climate model sensitivity to forcings and feedbacks needs to be reevaluated. Here, we analyze a global database of Holocene paleotemperature records to investigate the spatiotemporal structure of the HTM. Continental proxy records at mid and high latitudes of the Northern Hemisphere portray a “classic” HTM (8–4 ka). In contrast, marine proxy records from the same latitudes reveal an earlier HTM (11–7ka), while a clear temperature anomaly is missing in the tropics. The results indicate a heterogeneous response to climate forcing and highlight the lack of globally synchronous HTM.