Rechercher
Bibliographie complète 824 ressources
-
Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0°C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low‐temperature response to shut down GPP for temperatures below 0°C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf‐to‐canopy scaling and better values of model parameters that control the maximum potential GPP, such as ε max (LUE), V cmax (unstressed Rubisco catalytic capacity) or J max (the maximum electron transport rate). , Key Points Gross primary productivity (GPP) from 26 models tested at 39 flux tower sites Simulated light use efficiency controls model performance Models overpredict GPP under dry conditions
-
Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0°C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low‐temperature response to shut down GPP for temperatures below 0°C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf‐to‐canopy scaling and better values of model parameters that control the maximum potential GPP, such as ε max (LUE), V cmax (unstressed Rubisco catalytic capacity) or J max (the maximum electron transport rate). , Key Points Gross primary productivity (GPP) from 26 models tested at 39 flux tower sites Simulated light use efficiency controls model performance Models overpredict GPP under dry conditions
-
Abstract Accurate snowfall measurements are critical for a wide variety of research fields, including snowpack monitoring, climate variability, and hydrological applications. It has been recognized that systematic errors in snowfall measurements are often observed as a result of the gauge geometry and the weather conditions. The goal of this study is to understand better the scatter in the snowfall precipitation rate measured by a gauge. To address this issue, field observations and numerical simulations were carried out. First, a theoretical study using finite-element modeling was used to simulate the flow around the gauge. The snowflake trajectories were investigated using a Lagrangian model, and the derived flow field was used to compute a theoretical collection efficiency for different types of snowflakes. Second, field observations were undertaken to determine how different types, shapes, and sizes of snowflakes are collected inside a Geonor, Inc., precipitation gauge. The results show that the collection efficiency is influenced by the type of snowflakes as well as by their size distribution. Different types of snowflakes, which fall at different terminal velocities, interact differently with the airflow around the gauge. Fast-falling snowflakes are more efficiently collected by the gauge than slow-falling ones. The correction factor used to correct the data for the wind speed is improved by adding a parameter for each type of snowflake. The results show that accurate measure of snow depends on the wind speed as well as the type of snowflake observed during a snowstorm.
-
Drought-induced tree mortality, which rapidly alters forest ecosystem composition, structure, and function, as well as the feedbacks between the biosphere and climate, has occurred worldwide over the past few decades, and is expected to increase pervasively as climate change progresses. The objectives of this review are to (1) highlight the likely ecological consequences of drought-induced tree mortality, (2) synthesize the hypotheses related to drought-induced tree mortality, (3) discuss the implications of current knowledge for modeling tree mortality processes under climate change, and (4) highlight future research needs. First, we emphasize the likely ecological consequences of tree mortality from ecosystem to biome to continental scales. We then document and criticize multiple non-exclusive tree mortality hypotheses (e.g., carbon starvation — carbon supply is less than carbon demand; and hydraulic failure — desiccation from failed water transport) from a more comprehensive ecological perspective. Next, we extend a forest decline concept model, Manion’s framework, by considering new emerging environmental conditions, for a more thorough understanding of the effects of climate change on forest decline. We find that an increase in drought frequency and (or) climate-change-type droughts may trigger increased background tree mortality rates and severe forest dieback events, accelerating species turnover and ecological regime shifts. The contribution of CO 2 fertilization, rising temperature within the optimal growth range, and increased nitrogen deposition may defer or reduce this trend in tree mortality, but such contributions will vary between locations, species, and tree sizes. Multiple hypotheses proposed for drought-induced tree mortality are discussed, but coupling carbon and water cycles could help resolve the debate. The absence of a physiological understanding of tree mortality mechanisms limits the predictive ability of current models from stand-level process-based models to dynamic global vegetation models. We thus suggest that long-term observations, experiments, and models should be tightly interwoven during the research process to better forecast future climate changes and evaluate their impacts on forests.
-
Abstract Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and height diversity indices as well as a combination of these diversity indices were used to correlate aboveground C stocks. Multiple linear regressions were subsequently used to quantify the relationships between these indices and aboveground C stocks, and partial correlation analysis was also adopted to remove the effects of other explanatory variables. Results show that stand structural diversity has a significant positive effect on aboveground C stocks even though the relationship is weak overall. Positive relationships observed between the diversity indices and aboveground C stocks support the hypothesis that increased structural diversity enhances aboveground C storage capacity. This occurs because complex forest structures allow for greater light infiltration and promote a more efficient resource use by trees, leading to an increase in biomass and C production. Mixed tolerant species composition and uneven-aged stand management in conjunction with selection or partial cutting to maintain high structural diversity is therefore recommended to preserve biodiversity and C stocks in spruce-dominated forests.