Votre recherche
Résultats 78 ressources
-
Abstract In sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.
-
Abstract The collection efficiency of a typical precipitation gauge-shield configuration decreases with increasing wind speed, with a high scatter for a given wind speed. The high scatter in the collection efficiency for a given wind speed arises in part from the variability in the characteristics of falling snow and atmospheric turbulence. This study uses weighing gauge data collected at the Marshall Field Site near Boulder, Colorado, during the WMO Solid Precipitation Intercomparison Experiment (SPICE). Particle diameter and fall speed data from a laser disdrometer were used to show that the scatter in the collection efficiency can be reduced by considering the fall speed of solid precipitation particles. The collection efficiency was divided into two classes depending on the measured mean-event particle fall speed during precipitation events. Slower-falling particles were associated with a lower collection efficiency. A new transfer function (i.e., the relationship between collection efficiency and other meteorological variables, such as wind speed or air temperature) that includes the fall speed of the hydrometeors was developed. The root-mean-square error of the adjusted precipitation with the new transfer function with respect to a weighing gauge placed in a double fence intercomparison reference was lower than using previously developed transfer functions that only consider wind speed and air temperature. This shows that the measured fall speed of solid precipitation with a laser disdrometer accounts for a large amount of the observed scatter in weighing gauge collection efficiency.
-
Abstract Approximately 10 years ago, convection‐permitting regional climate models (CPRCMs) emerged as a promising computationally affordable tool to produce fine resolution (1–4 km) decadal‐long climate simulations with explicitly resolved deep convection. This explicit representation is expected to reduce climate projection uncertainty related to deep convection parameterizations found in most climate models. A recent surge in CPRCM decadal simulations over larger domains, sometimes covering continents, has led to important insights into CPRCM advantages and limitations. Furthermore, new observational gridded datasets with fine spatial and temporal (~1 km; ~1 h) resolutions have leveraged additional knowledge through evaluations of the added value of CPRCMs. With an improved coordination in the frame of ongoing international initiatives, the production of ensembles of CPRCM simulations is expected to provide more robust climate projections and a better identification of their associated uncertainties. This review paper presents an overview of the methodology to produce CPRCM simulations and the latest research on the related added value in current and future climates. Impact studies that are already taking advantage of these new CPRCM simulations are highlighted. This review paper ends by proposing next steps that could be accomplished to continue exploiting the full potential of CPRCMs. This article is categorized under: Climate Models and Modeling > Earth System Models
-
Abstract In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.
-
Abstract Terrestrial ecosystems provide multiple services interacting in complex ways. However, most ecosystem services (ESs) models (e.g., InVEST and ARIES) ignored the relationships among ESs. Process‐based models can overcome this limitation, and the integration of ecological models with remote sensing data could greatly facilitate the investigation of the complex ecological processes. Therefore, based on the Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA) models, we developed a process‐based ES model (CEVSA‐ES) integrating remotely sensed leaf area index to evaluate four important ESs (i.e., productivity provision, carbon sequestration, water retention, and soil retention) at annual timescale in China. Compared to the traditional terrestrial biosphere models, the main innovation of CEVSA‐ES model was the consideration of soil erosion processes and its impact on carbon cycling. The new version also improved the carbon‐water cycle algorithms. Then, the Sobol and DEMC methods that integrated the CEVSA‐ES model with nine flux sites comprising 39 site‐years were used to identify and optimize parameters. Finally, the model using the optimized parameters was validated at 26 field sites comprising 135 site‐years. Simulation results showed good fits with ecosystem processes, explaining 95%, 92%, 76%, and 65% interannual variabilities of gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration, respectively. The CEVSA‐ES model performed well for productivity provision and carbon sequestration, which explained 96% and 81% of the spatial‐temporal variations of the observed annual productivity provision and carbon sequestration, respectively. The model also captured the interannual trends of water retention and soil erosion for most sites or basins. , Plain Language Summary Terrestrial ecosystems simultaneously provide multiple ecosystem services (ESs). The common environmental drivers and internal mechanisms lead to nonlinear and dynamic relationships among ESs. Assessing the spatiotemporal changes of ESs have recently emerged as an element of ecosystem management and environmental policies. However, appropriate methods linking ESs to biogeochemical and biophysical processes are still lacking. In this study, we developed a process‐based model Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA‐ES) that integrates remote sensing data for evaluating ESs. We first described the model framework and detailed algorithms of the processes related to ESs. Then a model‐fusion method was applied to optimize parameters to which the model was sensitive and to improve model performance based on multi‐source observational data. The calibrated CEVSA‐ES model showed good performance for carbon and water fluxes (i.e., gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration). The CEVSA‐ES model performed well for productivity provision, and carbon sequestration. It also captured the interannual trends of water retention and soil erosion for most sites or basins in Chinese terrestrial ecosystems. The CEVSA‐ES model not only has the potential to improve the accuracy of simulated ESs, but also can capture the relationships among ESs, which could support the trade‐offs and synergies among ESs. , Key Points We developed an ecosystem service model Carbon and Exchange between Vegetation, Soil, and Atmosphere‐ecosystem services (CEVSA‐ES) that integrates ecosystem processes with satellite‐based data Accounting for soil retention/erosion and its impact on carbon cycling was the main difference from other process‐based models The CEVSA‐ES model with optimized parameters explained 47%–96% of the spatial and temporal variations of four ecosystem services in China
-
Abstract This interdisciplinary study presents a human perspective on climatic variations by combining documentary, discursive, instrumental, and proxy data. Historical sources were used to characterize climate variations along the coast of Labrador/Nunatsiavut during the 19 th century and the first half of the 20 th century. Written and early instrumental archives provided original information on the state and perception of climate before the establishment of meteorological stations, which permitted an intra-annual perspective on climatic variations. Written sources depicted the sensitivity of humans to climatic variations. Exceptional seasonal climatic events were extracted from documentary and discursive sources, which were complemented by tree-ring and early instrumental data. From 1780 to 1900, data indicated a succession of relatively warm and cold episodes. Most warm periods were described as stormy and variable. The final part of the studied records showed cold conditions from 1900 to 1925 and warm conditions from 1925 to 1950. Historical sources helped to discriminate a seasonal signal. Mild autumn-winter conditions were recorded since 1910 in relation with positive anomalies of the North Atlantic Oscillation in winter. Relatively warm spring-summer conditions were recorded after 1920, which corresponds to a phase of positive anomaly of the Atlantic Multidecadal Oscillation.
-
Abstract Aim Tree species diversity can increase the stability of ecosystem productivity by increasing mean productivity and/or reducing the standard deviation in productivity. However, stand structure, environmental and socio‐economic conditions influence plant diversity and might strongly influence the relationships between diversity and stability in natural forest communities. The relative importance of these factors for community stability remains poorly understood in complex (species‐rich) subtropical forests. Location Subtropical area of southern China. Time period 1999–2014. Major taxa studied Forest trees. Methods We conducted bivariate analyses to examine the mechanisms (overyielding and species asynchrony) underlying the effects of diversity on stability. Multiple regression models were then used to determine the relative importance of tree species diversity, stand structure, socio‐economic factors and environmental conditions on stability. Structural equation modelling was used to disentangle how these variables directly and/or indirectly affect forest stability. Results Tree species richness exerted a positive effect on stability through overyielding and species asynchrony, and this effect was stronger in mountainous forests than in hilly forests. Species richness positively affected the mean productivity, whereas species asynchrony negatively affected the variability in productivity, hence increasing forest stability. Structural diversity also had a positive effect, whereas population density had a negative effect on stability. Precipitation variability and slope mainly had indirect influences on stability through their effects on tree species richness. Main conclusions Overall, tree species diversity governed stability; however, stand structure, socio‐economic conditions and environmental conditions also played an important role in shaping stability in these forests. Our work highlights the importance of regulating stand structure and socio‐economic factors in forest management and biodiversity conservation, to maintain and enhance their stability to provide ecosystem services in the face of unprecedented anthropogenic activities and global climate change.
-
Abstract Timothy ( Phleum pratense L.) is expected to be more affected by climate change than other forage grasses. Therefore, alternatives to timothy, such as tall fescue [ Schedonorus arundinaceus (Shreb.) Dumort.], meadow fescue [ S. pratensis (Huds.) P. Beauv.], or meadow bromegrass ( Bromus biebersteinii Roem. & Schult.) should be explored. Our objective was to simulate and compare the yield and nutritive value of four alfalfa ( Medicago sativa L.)–grass mixtures and annual crops grown on two virtual dairy farms representative of eastern Canada under future climate conditions. The Integrated Farm System Model (IFSM) was used for these projections under the reference (1971–2000), near future (2020–2049), and distant future (2050–2079) climates for two climatically contrasting agricultural areas in eastern Canada (eastern Quebec; southwestern Quebec). In both future periods, annual forage dry matter (DM) yields of the four alfalfa–grass mixtures are projected to increase because of additional harvests, with greater DM yield increases projected in the colder area than in the warmer area. In both areas, the highest yield increase is projected for alfalfa–tall fescue mixture and the lowest for alfalfa–timothy mixture. The nutritive value of all mixtures should increase due to a greater proportion of alfalfa. In both areas, yields of silage and grain corn ( Zea mays L.), and soybean [ Glycine max (L.) Merr.] are projected to increase, but not those of wheat ( Triticum aestivum L.) and barley ( Hordeum vulgare L.). Tall fescue, meadow bromegrass, and meadow fescue are adequate alternatives to timothy grown in association with alfalfa under future climate conditions. , Core Ideas Forage yields of alfalfa–grass mixtures are projected to increase due to additional harvests. Mixture with tall fescue is projected to increase the most and timothy the least. Tall fescue, meadow fescue, and meadow bromegrass are valuable alternatives to timothy. Nutritive value is projected to increase due to more alfalfa in the mixture. Corn and soybean grain yields are projected to increase but not those of wheat and barley.