Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Année de publication
  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2020

Résultats 79 ressources

Date décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • Page 3 de 4
Résumés
  • Colli, M., Stagnaro, M., Lanza, L. G., Rasmussen, R., & Thériault, J. M. (2020). Adjustments for Wind-Induced Undercatch in Snowfall Measurements Based on Precipitation Intensity. Journal of Hydrometeorology, 21(5), 1039–1050. https://doi.org/10.1175/JHM-D-19-0222.1

    Abstract Adjustments for the wind-induced undercatch of snowfall measurements use transfer functions to account for the expected reduction of the collection efficiency with increasing the wind speed for a particular catching-type gauge. Based on field experiments or numerical simulation, collection efficiency curves as a function of wind speed also involve further explanatory variables such as surface air temperature and/or precipitation type. However, while the wind speed or wind speed and temperature approach is generally effective at reducing the measurement bias, it does not significantly reduce the root-mean-square error (RMSE) of the residuals, implying that part of the variance is still unexplained. In this study, we show that using precipitation intensity as the explanatory variable significantly reduces the scatter of the residuals. This is achieved by optimized curve fitting of field measurements from the Marshall Field Site (Colorado, United States), using a nongradient optimization algorithm to ensure optimal binning of experimental data. The analysis of a recent quality-controlled dataset from the Solid Precipitation Intercomparison Experiment (SPICE) campaign of the World Meteorological Organization confirms the scatter reduction, showing that this approach is suitable to a variety of locations and catching-type gauges. Using computational fluid dynamics simulations, we demonstrate that the physical basis of the reduction in RMSE is the correlation of precipitation intensity with the particle size distribution. Overall, these findings could be relevant in operational conditions since the proposed adjustment of precipitation measurements only requires wind sensor and precipitation gauge data.

    Consulter sur journals.ametsoc.org
  • De Vernal, A., Radi, T., Zaragosi, S., Van Nieuwenhove, N., Rochon, A., Allan, E., De Schepper, S., Eynaud, F., Head, M. J., Limoges, A., Londeix, L., Marret, F., Matthiessen, J., Penaud, A., Pospelova, V., Price, A., & Richerol, T. (2020). Distribution of common modern dinoflagellate cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental parameters: The new n=1968 database. Marine Micropaleontology, 159, 101796. https://doi.org/10.1016/j.marmicro.2019.101796
    Consulter sur linkinghub.elsevier.com
  • Deng, L., Huang, C., Kim, D., Shangguan, Z., Wang, K., Song, X., & Peng, C. (2020). Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2 O flux and greater stimulation of the calculated C pools. Global Change Biology, 26(4), 2613–2629. https://doi.org/10.1111/gcb.14970

    Abstract The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO 2 , CH 4 and N 2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH 4 uptake decreased by 6.0%. Furthermore, the percentage increase in N 2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver ( Ecology Letters , 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha −1  year −1 per kg N ha −1  year −1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO 2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO 2 /year. It also increased net soil GHG emissions by 10.20 Pg CO 2 ‐Geq (CO 2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.

    Consulter sur onlinelibrary.wiley.com
  • Di Luca, A., De Elía, R., Bador, M., & Argüeso, D. (2020). Contribution of mean climate to hot temperature extremes for present and future climates. Weather and Climate Extremes, 28, 100255. https://doi.org/10.1016/j.wace.2020.100255
    Consulter sur linkinghub.elsevier.com
  • Di Virgilio, G., Evans, J. P., Di Luca, A., Grose, M. R., Round, V., & Thatcher, M. (2020). Realised added value in dynamical downscaling of Australian climate change. Climate Dynamics, 54(11–12), 4675–4692. https://doi.org/10.1007/s00382-020-05250-1
    Consulter sur link.springer.com
  • Di, S., Zong, M., Li, S., Li, H., Duan, C., Peng, C., Zhao, Y., Bai, J., Lin, C., Feng, Y., Huang, W., & Wang, D. (2020). The effects of the soil environment on soil organic carbon in tea plantations in Xishuangbanna, southwestern China. Agriculture, Ecosystems & Environment, 297, 106951. https://doi.org/10.1016/j.agee.2020.106951
    Consulter sur linkinghub.elsevier.com
  • Feng, H., Guo, J., Han, M., Wang, W., Peng, C., Jin, J., Song, X., & Yu, S. (2020). A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems. Forest Ecology and Management, 455, 117702. https://doi.org/10.1016/j.foreco.2019.117702
    Consulter sur linkinghub.elsevier.com
  • He, Y., Peng, S., Liu, Y., Li, X., Wang, K., Ciais, P., Arain, M. A., Fang, Y., Fisher, J. B., Goll, D., Hayes, D., Huntzinger, D. N., Ito, A., Jain, A. K., Janssens, I. A., Mao, J., Matteo, C., Michalak, A. M., Peng, C., … Zhu, Q. (2020). Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 26(3), 1474–1484. https://doi.org/10.1111/gcb.14816

    Abstract Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).

    Consulter sur onlinelibrary.wiley.com
  • Hohmann, S., Kucera, M., & De Vernal, A. (2020). Identifying the signature of sea-surface properties in dinocyst assemblages: Implications for quantitative palaeoceanographical reconstructions by transfer functions and analogue techniques. Marine Micropaleontology, 159, 101816. https://doi.org/10.1016/j.marmicro.2019.101816
    Consulter sur linkinghub.elsevier.com
  • Ji, F., Evans, J. P., Di Virgilio, G., Nishant, N., Di Luca, A., Herold, N., Downes, S. M., Tam, E., & Beyer, K. (2020). Projected changes in vertical temperature profiles for Australasia. Climate Dynamics, 55(9–10), 2453–2468. https://doi.org/10.1007/s00382-020-05392-2
    Consulter sur link.springer.com
  • Khan, S. U., Ogden, N. H., Fazil, A. A., Gachon, P. H., Dueymes, G. U., Greer, A. L., & Ng, V. (2020). Current and Projected Distributions of Aedes aegypti and Ae. albopictus in Canada and the U.S. Environmental Health Perspectives, 128(5), 057007. https://doi.org/10.1289/EHP5899
    Consulter sur ehp.niehs.nih.gov
  • Kolling, H. M., Stein, R., Fahl, K., Sadatzki, H., De Vernal, A., & Xiao, X. (2020). Biomarker Distributions in (Sub)‐Arctic Surface Sediments and Their Potential for Sea Ice Reconstructions. Geochemistry, Geophysics, Geosystems, 21(10), e2019GC008629. https://doi.org/10.1029/2019GC008629

    Abstract To evaluate the present sea ice changes in a longer‐term perspective, the knowledge of sea ice variability on preindustrial and geological time scales is essential. For the interpretation of proxy reconstructions it is necessary to understand the recent signals of different sea ice proxies from various regions. We present 260 new sediment surface samples collected in the (sub‐)Arctic Oceans that were analyzed for specific sea ice (IP 25 ) and open‐water phytoplankton biomarkers (brassicasterol, dinosterol, and highly branched isoprenoid [HBI] III). This new biomarker data set was combined with 615 previously published biomarker surface samples into a pan‐Arctic database. The resulting pan‐Arctic biomarker and sea ice index (PIP 25 ) database shows a spatial distribution correlating well with the diverse modern sea ice concentrations. We find correlations of P B IP 25 , P D IP 25 , and P III IP 25 with spring and autumn sea ice concentrations. Similar correlations with modern sea ice concentrations are observed in Baffin Bay. However, the correlations of the PIP 25 indices with modern sea ice concentrations differ in Fram Strait from those of the (sub‐)Arctic data set, which is likely caused by region‐specific differences in sea ice variability, nutrient availability, and other environmental conditions. The extended (sea ice) biomarker database strengthens the validity of biomarker sea ice reconstructions in different Arctic regions and shows how different sea ice proxies combined may resolve specific seasonal sea ice conditions. , Key Points IP 25 provides information about modern sea ice cover on a (sub‐)Arctic‐wide scale All PIP 25 indices correlate well with spring and autumn sea ice concentrations on a (sub‐)Arctic‐wide scale The combination of biomarker data and dinoflagellate cysts may yield an approach to reconstruct sea ice conditions during different seasons

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Li, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., & Zhang, K. (2020). The significant contribution of lake depth in regulating global lake diffusive methane emissions. Water Research, 172, 115465. https://doi.org/10.1016/j.watres.2020.115465
    Consulter sur linkinghub.elsevier.com
  • Li, T., Ge, L., Huang, J., Yuan, X., Peng, C., Wang, S., Bu, Z., Zhu, Q., Wang, Z., Liu, W., & Wang, M. (2020). Contrasting responses of soil exoenzymatic interactions and the dissociated carbon transformation to short- and long-term drainage in a minerotrophic peatland. Geoderma, 377, 114585. https://doi.org/10.1016/j.geoderma.2020.114585
    Consulter sur linkinghub.elsevier.com
  • Li, Y., Liu, X., Xu, W., Bongers, F. J., Bao, W., Chen, B., Chen, G., Guo, K., Lai, J., Lin, D., Mi, X., Tian, X., Wang, X., Yan, J., Yang, B., Zheng, Y., & Ma, K. (2020). Effects of diversity, climate and litter on soil organic carbon storage in subtropical forests. Forest Ecology and Management, 476, 118479. https://doi.org/10.1016/j.foreco.2020.118479
    Consulter sur linkinghub.elsevier.com
  • Li, Y., Gupta, A. S., Taschetto, A. S., Jourdain, N. C., Di Luca, A., Done, J. M., & Luo, J.-J. (2020). Assessing the role of the ocean–atmosphere coupling frequency in the western Maritime Continent rainfall. Climate Dynamics, 54(11–12), 4935–4952. https://doi.org/10.1007/s00382-020-05266-7
    Consulter sur link.springer.com
  • Liu, W., Hou, Y., Liu, W., Yang, M., Yan, Y., Peng, C., & Yu, Z. (2020). Global estimation of the climate change impact of logging residue utilization for biofuels. Forest Ecology and Management, 462, 118000. https://doi.org/10.1016/j.foreco.2020.118000
    Consulter sur linkinghub.elsevier.com
  • Liu, W., Xu, J., Xie, X., Yan, Y., Zhou, X., & Peng, C. (2020). A new integrated framework to estimate the climate change impacts of biomass utilization for biofuel in life cycle assessment. Journal of Cleaner Production, 267, 122061. https://doi.org/10.1016/j.jclepro.2020.122061
    Consulter sur linkinghub.elsevier.com
  • Liu, Y., Zhu, G., Hai, X., Li, J., Shangguan, Z., Peng, C., & Deng, L. (2020). Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecological Engineering, 142, 105631. https://doi.org/10.1016/j.ecoleng.2019.105631
    Consulter sur linkinghub.elsevier.com
  • Liu, Z., Peng, C., De Grandpré, L., Candau, J., Work, T., Zhou, X., & Kneeshaw, D. (2020). Aerial spraying of bacterial insecticides to control spruce budworm defoliation leads to reduced carbon losses. Ecosphere, 11(1), e02988. https://doi.org/10.1002/ecs2.2988

    Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.

    Consulter sur esajournals.onlinelibrary.wiley.com
  • 1
  • 2
  • 3
  • 4
  • Page 3 de 4
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 15/06/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (3)
  • Boudreault, Mathieu (2)
  • De Vernal, Anne (14)
  • Di Luca, Alejandro (9)
  • Gachon, Philippe (4)
  • Grenier, Patrick (2)
  • Lucas-Picher, Philippe (1)
  • Pausata, Francesco S.R. (9)
  • Peng, Changhui (31)
  • Thériault, Julie M. (4)

Type de ressource

  • Article de revue (76)
  • Chapitre de livre (1)
  • Jeu de données (1)
  • Prépublication (1)

Année de publication

  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2020

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web