Rechercher
Bibliographie complète 824 ressources
-
Abstract The Barents Sea offers a suitable location for documenting advection of warm and saline Atlantic Water (AW) into the Arctic and its impact on deglaciation and postglacial conditions. We investigate the timing, succession, and mechanisms of the transition from proximal glaciomarine to marine environment in the northwestern Barents Sea. Two studied sediment cores demonstrate diachronous retreat of the grounded ice sheet from the Kvitøya Trough (core S2528) to Erik Eriksen Trough (core S2519). Oxygen isotope records from core S2528 depict a two-step pattern, with lower δ 18 O values prior to the Younger Dryas (YD), and higher values afterward because of advection of the more saline, 18 O-enriched AW. At this location, subsurface AW penetration increased during the Allerød and YD/Preboreal transition. In the study area, foraminiferal and dinocyst data from the YD interval suggest cold conditions, extensive sea-ice cover, and brine formation, along with the flow of chilled AW at subsurface and the development of a high-productivity polynya in the Erik Eriksen Trough. Dense winter sea-ice cover with seasonal productivity persisted in the Kvitøya Trough area during the early Holocene, whereas surface warming seems to have occurred during the middle Holocene interval.
-
Abstract Climate change has a profound impact on the global carbon cycle, including effects on riverine carbon pools, which connect terrestrial, oceanic, and atmospheric carbon pools. Until now, terrestrial ecosystem models have rarely incorporated riverine carbon components into global carbon budgets. Here we developed a new process‐based model, TRIPLEX‐HYDRA (TRIPLEX‐hydrological routing algorithm), that considers the production, consumption, and transport processes of nonanthropogenic dissolved organic carbon (DOC) from soil to river ecosystems. After the parameter calibration, model results explained more than 50% of temporal variations in all but three rivers. Validation results suggested that DOC yield simulated by TRIPLEX‐HYDRA has a good fit ( R 2 = 0.61, n = 71, p < 0.001) with global river observations. And then, we applied this model for global rivers. We found that mean DOC yield of global river approximately 1.08 g C/m 2 year, where most high DOC yield appeared in the rivers from high northern or tropic regions. Furthermore, our results suggested that global riverine DOC flux appeared a significant decrease trend (average rate: 0.38 Pg C/year) from 1951 to 2015, although the variation patterns of DOC fluxes in global rivers are diverse. A decreasing trend in riverine DOC flux appeared in the middle and high northern latitude regions (30–90°N), which could be attributable to an increased flow path and DOC degradation during the transport process. Furthermore, increasing trend of DOC fluxes is found in rivers from tropical regions (30°S–30°N), which might be related to an increase in terrestrial organic carbon input. Many other rivers (e.g., Mississippi, Yangtze, and Lena rivers) experienced no significant changes under a changing environment. , Key Points Terrestrial ecosystem models rarely incorporate riverine DOC components into the global carbon cycle The TRIPLEX‐HYDRA model simulates the spatiotemporal variation in the DOC fluxes in global rivers The global riverine DOC flux simulated by the TRIPLEX‐HYDRA model has significantly decreased from 1951 to 2015
-
Abstract Forest productivity may be determined not only by biodiversity but also by environmental factors and stand structure attributes. However, the relative importance of these factors in determining productivity is still controversial for subtropical forests. Based on a large dataset from 600 permanent forest inventory plots across subtropical China, we examined the relationship between biodiversity and forest productivity and tested whether stand structural attributes (stand density in terms of trees per ha, age and tree size) and environmental factors (climate and site conditions) had larger effects on productivity. Furthermore, we quantified the relative importance of environmental factors, stand structure and diversity in determining forest productivity. Diversity, together with stand structure and site conditions, regulated the variability in forest productivity. The relationship between diversity and forest productivity did not vary along environmental gradients. Stand density and age were more important modulators of forest productivity than diversity. Synthesis . Diversity had significant and positive effects on productivity in species‐rich subtropical forests, but the effects of stand density and age were also important. Our work highlights that while biodiversity conservation is often important, the regulation of stand structure can be even more important to maintain high productivity in subtropical forests.