Votre recherche
Résultats 836 ressources
-
Abstract We evaluate the longitudinal variation in meridional shifts of the tropical rainbelt in response to natural and anthropogenic forcings using a large suite of coupled climate model simulations. We find that the energetic framework of the zonal mean Hadley cell is generally not useful for characterizing shifts of the rainbelt at regional scales, regardless of the characteristics of the forcing. Forcings with large hemispheric asymmetry such as extratropical volcanic forcing, meltwater forcing, and the Last Glacial Maximum give rise to robust zonal mean shifts of the rainbelt; however, the direction and magnitude of the shift vary strongly as a function of longitude. Even the Pacific rainband does not shift uniformly under any forcing considered. Forcings with weak hemispheric asymmetry such as CO 2 and mid‐Holocene forcing give rise to zonal mean shifts that are small or absent, but the rainbelt does shift regionally in coherent ways across models that may have important dynamical consequences. , Plain Language Summary A band of heavy precipitation spanning the deep tropics is an essential feature of the climate system that diverse ecosystems and billions of people depend on. It is well known that this rainbelt, when averaged across all longitudes, shifts north and south in response to heating or cooling the atmosphere in one hemisphere more than the other; this framework has been widely applied to study past tropical rainfall changes under differing climate states. However, we show using many different climate model experiments that this framework does not apply to regional shifts in the rainbelt. Changes in the rainbelt vary from place to place, and thus, data documenting north or south shifts in one location cannot be used to infer similar shifts at other longitudes. , Key Points The zonal mean ITCZ framework is generally not useful for characterizing regional shifts of the tropical rainbelt, regardless of the forcing Meridional shifts of the tropical rainbelt vary strongly with longitude under all forcings considered All forcings produce robust regional shifts in the rainbelt that are larger than (and sometime oppose the direction of) the zonal mean shift
-
Abstract A prognostic equation for the liquid fraction of mixed-phase particles has been recently added to the Predicted Particle Properties (P3) bulk microphysics scheme. Mixed-phase particles are necessary to simulate key microphysical processes leading to various winter precipitation types, such as ice pellets and freezing rain. To illustrate the impacts of predicting the bulk liquid fraction, the 1998 North American Ice Storm is simulated using the Weather Research and Forecasting (WRF) Model with the modified P3 scheme. It is found that simulating partial melting by predicting the bulk liquid fraction produces higher mass and number mixing ratios of rain. This leads to smaller rain sizes reaching the refreezing layer as well as a decrease in the freezing rain accumulation at the surface by up to 30% in some locations compared to when no liquid fraction is predicted. The increase in fall speed and density and decrease of particle diameter during partial melting combined with an improved representation of the refreezing process in the modified P3 leads to generally higher total solid surface precipitation rates than using the original P3 scheme. There is also an increase of solid precipitation in regions of ice pellet accumulation. Overall, the simulation of mixed-phase particles notably impacts the vertical and spatial distributions of precipitation properties.
-
Abstract Background During Spring 2019, many regions in Quebec (Canada) experienced severe floods. As much as 5,245 households were flooded and 7,452 persons were evacuated, causing extensive material and human damages. A large population-based study was therefore conducted to examine medium-term effects of this natural disaster on health and well-being. Methods Six to eight months post-floods, households located in the flooded zones (in one of the 6 Quebec regions the most severely affected) were randomly invited to participate to a telephone or a web-based survey (response rate=15.3%). Several psychological health outcomes were examined, including psychological distress (based on the 6-item Kessler Scale, score 0-24) and post-traumatic stress (based on the 15-item Impact of Event Scale, score 0-75). These outcomes were compared among 3 levels of exposure using Chi-square test: flooded (floodwater in ≥ 1 liveable room), disrupted (floodwater in non-liveable areas, loss of utilities, loss of access to services, or evacuation), and unaffected. Results Of the 3,437 participating households, 349 (10.2%) were flooded and 1230 (35.8%) were disrupted (but not flooded) during the 2019 floods. A steep gradient was observed for moderate/severe symptoms of post-traumatic stress (score ≥ 26) according to the level of exposure to flooding (unaffected: 3.0%; disrupted: 14.6%; flooded: 44.1%; p < 0.0005). For psychological distress (score ≥ 7), the baseline level (i.e. unaffected group) was 7.3% while it reached 15.0% and 38.4% in the disrupted and the flooded groups, respectively (p < 0.0005). Conclusions This study is among the largest to examine the psychological impacts of flooding. The magnitude of effects observed in flooded households is consistent with the literature and calls for stronger social and economic measures to support flood victims. Such support should help coping with initial stress, but also alleviating secondary stressors classically observed in post-flood settings. Key messages Psychological impacts of floods may persist for several months and may be observed in both flooded and disrupted people. Stronger social and economic measures are needed to better support flood victims, not only in the short but also in the longer term.
-
Aerosol–cloud interactions present a large source of uncertainties in atmospheric and climate models. One of the main challenges to simulate ice clouds is to reproduce the right ice nucleating particle concentration. In this study, we derive a parameterization for immersion freezing according to the classical nucleation theory. Our objective was to constrain this parameterization with observations taken over the Canadian Arctic during the Amundsen summer 2014 and 2016 campaigns. We found a linear dependence of contact angle and temperature. Using this approach, we were able to reproduce the scatter in ice nucleated particle concentrations within a factor 5 of observed values with a small negative bias. This parameterization would be easy to implement in climate and atmospheric models, but its representativeness has to first be validated against other datasets.
-
Wetlands are important modulators of atmospheric greenhouse gas (GHGs) concentrations. However, little is known about the magnitudes and spatiotemporal patterns of GHGs fluxes in wetlands on the Qinghai-Tibetan Plateau (QTP), the world’s largest and highest plateau. In this study, we measured soil temperature and the fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) in an alpine wetland on the QTP from April 2017 to April 2019 by the static chamber method, and from January 2017 to December 2017 by the eddy covariance (EC) method. The CO 2 and CH 4 emission measurements from both methods showed different relationships to soil temperature at different timescales (annual and seasonal). Based on such relationship patterns and soil temperature data (1960–2017), we extrapolated the CO 2 and CH 4 emissions of study site for the past 57 years: the mean CO 2 emission rate was 91.38 mg C m –2 h –1 on different measurement methods and timescales, with the range of the mean emission rate from 35.10 to 146.25 mg C m –2 h –1 , while the mean CH 4 emission rate was 2.75 mg C m –2 h –1 , with the ranges of the mean emission rate from 1.41 to 3.85 mg C m –2 h –1 . The estimated regional CO 2 and CH 4 emissions from permanent wetlands on the QTP were 94.29 and 2.37 Tg C year –1 , respectively. These results indicate that uncertainties caused by measuring method and timescale should be fully considered when extrapolating wetland GHGs fluxes from local sites to the regional level. Moreover, the results of global warming potential showed that CO 2 dominates the GHG balance of wetlands on the QTP.
-
Abstract Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.
-
The study was to investigate the change patterns of soil organic carbon (SOC), total nitrogen (TN), and soil C/N (C/N) in each soil sublayer along vegetation restoration in subtropical China. We collected soil samples in four typical plant communities along a restoration chronosequence. The soil physicochemical properties, fine root, and litter biomass were measured. Our results showed the proportion of SOC stocks (Cs) and TN stocks (Ns) in 20–30 and 30–40 cm soil layers increased, whereas that in 0–10 and 10–20 cm soil layers decreased. Different but well-constrained C/N was found among four restoration stages in each soil sublayer. The effect of soil factors was greater on the deep soil than the surface soil, while the effect of vegetation factors was just the opposite. Our study indicated that vegetation restoration promoted the uniform distribution of SOC and TN on the soil profile. The C/N was relatively stable along vegetation restoration in each soil layer. The accumulation of SOC and TN in the surface soil layer was controlled more by vegetation factors, while that in the lower layer was controlled by both vegetation factors and soil factors.
-
Après les nombreuses crues printanières qui ont affecté le sud du Québec depuis 2011, le gouvernement du Québec a annoncé en avril 2019 une refonte importante de son programme d’aide financière aux sinistrés. Le programme introduit désormais une couverture limitée à vie de 100 000 $ pour les inondations successives, une mesure unique au Canada. L’objectif de cet article est d’analyser le coût des inondations successives et les impacts financiers de cette limite de couverture pour les ménages.
-
Abstract We quantify the skill of Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 models to represent daily temperature extremes. We find CMIP models systematically exaggerate the magnitude of daily temperature anomalies for both cold and hot extremes. We assess the contribution to a daily temperature extreme from four terms: the long‐term mean annual cycle, the diurnal cycle, synoptic variability, and seasonal variability for both cold and hot extremes. These four terms are combined, and the overall performance of individual climate models assessed. This identifies those models that can simulate temperature extremes well and simulate them well for the right reasons. The new error metric shows that increases in horizontal resolution usually lead to a better performance particularly for the coarser resolution models. The CMIP6 improvements relative to CMIP5 are systematic across most land regions and are only partially explained by the increase in horizontal resolution, and other differences must therefore help explain the higher CMIP6 skill. , Key Points CMIP5 and CMIP6 models exaggerate the magnitude of daily temperature anomalies for hot days and cold nights extremes Higher‐resolution models improve the simulation of temperature extremes largely due to better simulation of synoptic scales CMIP6 outperforms the simulation of temperature extremes compared to CMIP5 beyond the benefits given by the higher resolution
-
Abstract Several far‐infrared (FIR) satellite missions are planned for the next decade, with a special interest for the Arctic region. A theoretical study is performed to help with the design of an FIR radiometer, whose configuration in terms of channels number and frequencies is optimized based on information content analysis. The problem is cast in a context of vertical column experiments (1D) to determine the optimal configuration of a FIR radiometer to study the Arctic polar night. If only observations of the FIR radiometer were assimilated, the results show that for humidity, 90% of the total information content is obtained with four bands, whereas for temperature, 10 bands are needed. When the FIR measurements are assimilated on top of those from the advanced infrared sounder (AIRS), the former bring in additional information between the surface and 850 hPa and from 550 to 250 hPa for humidity. Moreover, between 400 and 200 hPa, the FIR radiometer is better than AIRS at reducing the analysis error variance for humidity. This indicates the potential of FIR observations for improving water vapor analysis in the Arctic. , Key Points FIR channels add information for UTLS water vapor compared to standard MIR channels IC is used to optimize the channels frequencies and widths of a FIR radiometer A high DFS is reached with only a few channels of an optimized FIR radiometer
-
Abstract Quantile mapping (QM) is a technique often used for statistical post‐processing (SPP) of climate model simulations, in order to adjust their biases relative to a selected reference product and/or to downscale their resolution. However, when QM is applied in univariate mode, there is a risk of generating other problems, like intervariable physical inconsistency (PI). Here, such a risk is investigated with daily temperature minimum ( T min ) and maximum ( T max ), for which the relationship T min > T max would be inconsistent with the definition of the variables. QM is applied to an ensemble of 78 daily CMIP5 simulations over Hudson Bay for the application period 1979–2100, with Climate Forecast System Reanalysis (CFSR) selected as the reference product during the calibration period 1979–2010. This study's specific objectives are as follows: to investigate the conditions under which PI situations are generated; to test whether PI may be prevented simply by tuning some of the QM technique's numerical choices; and to compare the suitability of alternative approaches that hinder PI by design. Primary results suggest that PI situations appear preferentially for small values of the initial (simulated) diurnal temperature range (DTR), but the differential between the respective biases of T min and T max also plays an important role; one cannot completely prevent the generation of PI simply by adjusting QM parameters and options, but forcing preservation of the simulated long‐term trends generates fewer PI situations; for avoiding PI between T min and T max , the present study supports a previous recommendation to directly post‐process T max and DTR before deducing T min .
-
Volcanic eruptions trigger ENSO response through shifts in the ITCZ and extratropical-to-tropical teleconnections. , The mechanisms through which volcanic eruptions affect the El Niño–Southern Oscillation (ENSO) state are still controversial. Previous studies have invoked direct radiative forcing, an ocean dynamical thermostat (ODT) mechanism, and shifts of the Intertropical Convergence Zone (ITCZ), among others, to explain the ENSO response to tropical eruptions. Here, these mechanisms are tested using ensemble simulations with an Earth system model in which volcanic aerosols from a Tambora-like eruption are confined either in the Northern or the Southern Hemisphere. We show that the primary drivers of the ENSO response are the shifts of the ITCZ together with extratropical circulation changes, which affect the tropics; the ODT mechanism does not operate in our simulations. Our study highlights the importance of initial conditions in the ENSO response to tropical volcanic eruptions and provides explanations for the predominance of posteruption El Niño events and for the occasional posteruption La Niña in observations and reconstructions.
-
Abstract A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.
-
Abstract. The 0 ∘C temperature threshold is critical for many meteorological and hydrological processes driven by melting and freezing in the atmosphere, surface, and sub-surface and by the associated precipitation varying between rain, freezing rain, wet snow, and snow. This threshold is especially important in cold regions such as Canada, because it is linked with freeze–thaw, snowmelt, and permafrost. This study develops a Canada-wide perspective on near-0 ∘C conditions using hourly surface temperature and precipitation type observations from 92 climate stations for the period from 1981 to 2011. In addition, nine stations from various climatic regions are selected for further analysis. Near-0 ∘C conditions are defined as periods when the surface temperature is between −2 and 2 ∘C. Near-0 ∘C conditions occur often across all regions of the country, although the annual number of days and hours and the duration of these events varies dramatically. Various types of precipitation (e.g., rain, freezing rain, wet snow, and ice pellets) sometimes occur with these temperatures. Near-0 ∘C conditions and the reported precipitation type occurrences tend to be higher in Atlantic Canada, although high values also occur in other regions. Trends of most temperature-based and precipitation-based indicators show little or no change despite a systematic warming in annual surface temperatures over Canada. Over the annual cycle, near-0 ∘C temperatures and precipitation often exhibit a pattern: short durations occur around summer, driven by the diurnal cycle, and a tendency toward longer durations around winter, associated with storms. There is also a tendency for near-0 ∘C surface temperatures to occur more often than expected relative to other temperature windows at some stations due, at least in part, to diabatic cooling and heating that take place with melting and freezing, respectively, in the atmosphere and at the surface.
-
The paper describes the development of predictive equations of windthrow for five tree species based on remote sensing of wind-affected stands in southwestern New Brunswick (NB). The data characterises forest conditions before, during and after the passing of extratropical cyclone Arthur, July 4–5, 2014. The five-variable logistic function developed for balsam fir (bF) was validated against remote-sensing-acquired windthrow data for bF-stands affected by the Christmas Mountains windthrow event of November 7, 1994. In general, the prediction of windthrow in the area agreed fairly well with the windthrow sites identified by photogrammetry. The occurrence of windthrow in the Christmas Mountains was prominent in areas with shallow soils and prone to localised accelerations in mean and turbulent airflow. The windthrow function for bF was subsequently used to examine the future impact of windthrow under two climate scenarios (RCP’s 4.5 and 8.5) and species response to local changes anticipated with global climate change, particularly with respect to growing degree-days and soil moisture. Under climate change, future windthrow in bF stands (2006–2100) is projected to be modified as the species withdraws from the high-elevation areas and NB as a whole, as the climate progressively warms and precipitation increases, causing the growing environment of bF to deteriorate.
-
Abstract Several regions of the world, including the east coast of Australia, are characterized by the occurrence of low‐pressure systems with a range of different dynamical structures, including tropical, extratropical, and hybrid cyclones. Future changes in the occurrence of cyclones are better understood if storms are classified according to their dynamical structure. Therefore, we apply a classification of cyclones according to their cold‐core or warm‐core structure to an ensemble of regional climate model simulations. First, we show that historical simulations reproduce well the reanalysis results in terms of cyclone classification. We then show that once cyclone classification is applied, projections of future cyclone activity become more robust, including a decrease in the occurrence of both cold‐core and warm‐core cyclones. Finally, we show that in a warmer climate warm‐core hybrid cyclone activity could increase close to the coast, while the associated rainfall and wind are projected to increase. , Plain Language Summary Cyclones in the tropics derive their energy from the temperature difference between warm ocean waters and the atmosphere and their interior is warmer than the environment (warm core), while cyclones in the midlatitudes derive their energy from differences in the atmospheric temperature and density at different locations and their interior is colder than the environment (cold core). In subtropical regions both types of cyclone can form. Also in those regions cyclones known as hybrid cyclones form, with mixed tropical‐extratropical features, such as a partial lower tropospheric warm core and a partial upper tropospheric cold core. This study is focused on cyclones along the eastern coast of Australia. Here we show that dividing cyclones in different classes according to their thermal structure provides a better framework to interpret changes in cyclone activity at subtropical latitudes. This study has two main results. First, classifying cyclones adds value to climate projection robustness. A large number of models agree on the decrease in the occurrence of both cold‐core and warm‐core cyclones. The study also indicates increased occurrence of hybrid cyclones close to the Australian coast. Second, the study shows evidence of future changes in cyclone‐related impacts, such as an increase in the associated rainfall. , Key Points A physically based classification of hybrid cyclones is applied to an ensemble of regional climate model simulations The cyclone classification method adds value to the projections of future cyclone activity, making them more robust Results indicate future changes (2060–2079) toward more intense impacts associated with hybrid cyclones
-
Moso bamboo forests have greater net carbon uptake benefits with increasing nitrogen deposition in the coming decades. , Atmospheric nitrogen (N) deposition affects the greenhouse gas (GHG) balance of ecosystems through the net atmospheric CO 2 exchange and the emission of non-CO 2 GHGs (CH 4 and N 2 O). We quantified the effects of N deposition on biomass increment, soil organic carbon (SOC), and N 2 O and CH 4 fluxes and, ultimately, the net GHG budget at ecosystem level of a Moso bamboo forest in China. Nitrogen addition significantly increased woody biomass increment and SOC decomposition, increased N 2 O emission, and reduced soil CH 4 uptake. Despite higher N 2 O and CH 4 fluxes, the ecosystem remained a net GHG sink of 26.8 to 29.4 megagrams of CO 2 equivalent hectare −1 year −1 after 4 years of N addition against 22.7 hectare −1 year −1 without N addition. The total net carbon benefits induced by atmospheric N deposition at current rates of 30 kilograms of N hectare −1 year −1 over Moso bamboo forests across China were estimated to be of 23.8 teragrams of CO 2 equivalent year −1 .
-
Abstract. We have analyzed marine palynomorphs (mainly dinocysts and acritarchs) from the Integrated Ocean Drilling Program Site U1307 in the Labrador Sea in order to establish a detailed biostratigraphy for the Late Pliocene to Early Pleistocene. We have defined three magnetostratigraphically calibrated dinocyst and acritarch biozones in the Late Pliocene to Early Pleistocene. Zone LS1 is defined based on the highest occurrence of Barssidinium graminosum and covers the later Pliocene from 3.21 to 2.75 Ma. Zone LS2 is marked by the acme of Pyxidinopsis braboi which occurs between 2.75 and 2.57 Ma, thus encompassing the Plio–Pleistocene transition. Finally, zone LS3 extends from 2.57 to 2.23 Ma in the Early Pleistocene. The palynostratigraphic record of IODP Site U1307 is difficult to correlate to other North Atlantic and Nordic Seas sites mainly because of a different temporal resolution and a lack of well-defined biostratigraphic marker species at the basin scale. The low abundance, discontinuous occurrence and asynchronous events of warm-water Pliocene taxa such as Invertocysta lacrymosa, Impagidinium solidum, Ataxiodinium confusum, Melitasphaeridium choanophorum and Operculodinium? eirikianum suggest cooler conditions in the Labrador Sea than elsewhere in the North Atlantic, reflecting a strong regionalism. Nevertheless, as recorded at other locations in the North Atlantic, the disappearance of many dinocyst and acritarch taxa around 2.75 Ma at Site U1307 reflects a strong ecological response accompanying the intensification of the Northern Hemisphere glaciation.
-
Abstract. Anthropogenic changes in land use and land cover (LULC) during the pre-industrial Holocene could have affected regional and global climate. Existing scenarios of LULC changes during the Holocene are based on relatively simple assumptions and highly uncertain estimates of population changes through time. Archaeological and palaeoenvironmental reconstructions have the potential to refine these assumptions and estimates. The Past Global Changes (PAGES) LandCover6k initiative is working towards improved reconstructions of LULC globally. In this paper, we document the types of archaeological data that are being collated and how they will be used to improve LULC reconstructions. Given the large methodological uncertainties involved, both in reconstructing LULC from the archaeological data and in implementing these reconstructions into global scenarios of LULC, we propose a protocol to evaluate the revised scenarios using independent pollen-based reconstructions of land cover and climate. Further evaluation of the revised scenarios involves carbon cycle model simulations to determine whether the LULC reconstructions are consistent with constraints provided by ice core records of CO2 evolution and modern-day LULC. Finally, the protocol outlines how the improved LULC reconstructions will be used in palaeoclimate simulations in the Palaeoclimate Modelling Intercomparison Project to quantify the magnitude of anthropogenic impacts on climate through time and ultimately to improve the realism of Holocene climate simulations.