Votre recherche
Résultats 71 ressources
-
Abstract Aim Plant biomass allocation reflects the distribution of photosynthates among different organs in response to changing environmental conditions. Global change influences plant growth across terrestrial ecosystems, but impacts of individual and combined multiple global change factors (GCFs) on plant biomass allocation at the global scale are unclear. Location Global. Time period Contemporary. Major taxa studied Plants in terrestrial ecosystems. Methods We conducted a meta‐analysis of data comprising 4,180 pairwise observations to assess individual and combined effects of nitrogen addition (N), warming (W), elevated CO 2 (C), irrigation (I), and drought (D) on plant biomass allocation based on the ‘ratio‐based optimal partitioning’ and ‘isometric allocation’ hypotheses. Results We found that (a) ratio‐based plant biomass fractions of different organs were only minimally affected by individual and combined effects of the studied GCFs; (b) combined effects of two‐factor pairs of GCFs on plant biomass allocation were commonly additive, rather than synergistic or antagonistic; (c) moderator variables influenced, but seldom changed the direction of individual and combined effects of GCFs on plant biomass allocation; and (d) neither individual nor combined effects of the studied GCFs altered allometric relationships among different organs, indicating that patterns of plant biomass allocation under the environmental stress conditions exerted by the multiple GCFs were better explained by the isometric allocation rather than the ratio‐based optimal partitioning hypothesis. Main conclusions Our results show consistent patterns of allometric plant biomass partitioning under effects of multiple GCFs and provide evidence of an isometric plant biomass allocation trajectory in response to global change perturbations. These findings improve our understanding and prediction of terrestrial vegetation responses to future global change scenarios.
-
Abstract Global rivers and streams are important carbon transport pathways from land to the ocean. However, few studies have quantified terrigenous carbon dynamics in river ecosystems and its variations due to climate change and anthropogenic perturbations. Therefore, our study analysed fluvial particulate organic carbon (POC) and developed a processed‐based model (TRIPLEX‐HYDRA) to simulate the production, transport and removal (i.e., deposition, degradation and dam retention) processes of fluvial POC along the land–ocean aquatic continuum (LOAC). Based on our results, approximately 0.29 Pg of POC is exported from land to the ocean through rivers each year. More specifically, we found that rivers at low latitudes (30°S–30°N, 0.18 Pg yr −1 ) and high northern latitudes (60°N–90°N, 0.05 Pg yr −1 ) had higher POC fluxes compared to rivers in other regions. This high POC flux is related to strong erosion rates and high soil organic carbon storage. Additionally, our model simulation revealed that total POC flux from global river has not significantly changed from 1983 to 2015 but displays markedly decreased or increased trend at regional scale. These regional variations in POC export are affected by climate warming and dam construction. Moreover, approximately 0.46 Pg of POC is deposited or trapped by dams along the LOAC system, which plays a vital role in the global river carbon budget. Although some limitations and uncertainties remain, this study establishes a theoretical and methodological basis for quantifying riverine POC dynamics in the LOAC system.
-
Tropical rainforest ecosystems are important when considering the global methane (CH4) budget and in climate change mitigation. However, there is a lack of direct and year-round observations of ecosystem-scale CH4 fluxes from tropical rainforest ecosystems. In this study, we examined the temporal variations in CH4 flux at the ecosystem scale and its annual budget and environmental controlling factors in a tropical rainforest of Hainan Island, China, using 3 years of continuous eddy covariance measurements from 2016 to 2018. Our results show that CH4 uptake generally occurred in this tropical rainforest, where strong CH4 uptake occurred in the daytime, and a weak CH4 uptake occurred at night with a mean daily CH4 flux of −4.5 nmol m−2 s−1. In this rainforest, the mean annual budget of CH4 for the 3 years was −1260 mg CH4 m−2 year−1. Furthermore, the daily averaged CH4 flux was not distinctly different between the dry season and wet season. Sixty-nine percent of the total variance in the daily CH4 flux could be explained by the artificial neural network (ANN) model, with a combination of air temperature (Tair), latent heat flux (LE), soil volumetric water content (VWC), atmospheric pressure (Pa), and soil temperature at −10 cm (Tsoil), although the linear correlation between the daily CH4 flux and any of these individual variables was relatively low. This indicates that CH4 uptake in tropical rainforests is controlled by multiple environmental factors and that their relationships are nonlinear. Our findings also suggest that tropical rainforests in China acted as a CH4 sink during 2016–2018, helping to counteract global warming.
-
Urban ecosystems are complex systems with anthropogenic features that generate considerable CO 2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods [life cycle assessment, input–output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.
-
Abstract In forest ecosystems, the majority of methane (CH4) research focuses on soils, whereas tree stem CH4 flux and driving factors remain poorly understood. We measured the in situ stem CH4 flux using the static chamber–gas chromatography method at different heights in two poplar (Populus spp.) forests with separate soil textures. We evaluated the relationship between stem CH4 fluxes and environmental factors with linear mixed models and estimated the tree CH4 emission rate at the stand level. Our results showed that poplar stems were a net source of atmospheric CH4. The mean stem CH4 emission rates were 97.51 ± 6.21 μg·m−2·h−1 in Sihong and 67.04 ± 5.64 μg·m−2·h−1 in Dongtai. The stem CH4 emission rate in Sihong with clay loam soils was significantly higher (P < 0.001) than that in Dongtai with sandy loam soils. The stem CH4 emission rate also showed a seasonal variation, minimum in winter and maximum in summer. The stem CH4 emission rate generally decreased with increasing sampling height. Although the differences in CH4 emission rates between stem heights were significant in the annual averages, these differences were driven by differences observed in the summer. Stem CH4 emission rates were significantly and positively correlated with air temperature (P < 0.001), relative humidity (P < 0.001), soil water content (P < 0.001) and soil CH4 flux (P < 0.001). At these sites, the soil emitted CH4 to the atmosphere in summer (mainly from June to September) but absorbed CH4 from the atmosphere during the other season. At the stand level, tree CH4 emissions accounted for 2–35.4% of soil CH4 uptake. Overall, tree stem CH4 efflux could be an important component of the forest CH4 budget. Therefore, it is necessary to conduct more in situ monitoring of stem CH4 flux to accurately estimate the CH4 budget in the future.
-
Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.
-
Abstract Aim Compared with gradual climate change, extreme climatic events have more direct and dramatic impacts on vegetation growth. However, the influence of climate extremes on important phenological periods, such as the end of the growing season (EOS), remains unclear. Here, we investigate the temporal trends of EOS across different biomes and quantify the response of EOS to multiple climate extreme indices (CEIs). Location Northern middle and high latitudes. Time period 2000–2020. Major taxa studied Plants. Methods Three phenology extraction methods were used to compute EOS from satellite, FLUXNET and Pan European Phenology Project PEP725 phenological datasets. Different stress states of cold, hot, dry and wet extremes were represented by 12 CEIs. Partial correlation and ridge regression analysis were used to quantify the response of EOS to climate extremes across latitudinal and biome scales. Results Our study showed a delayed EOS in boreal biomes, but a significantly advanced EOS in temperate biomes. The advanced EOS induced by cold stress was observed for c . 80% of the vegetated pixels. The warm‐related CEIs delayed the EOS in high latitudes, and the delayed effect weakened or even reversed with decreasing latitude. In contrast, EOS exhibited opposite response patterns to dry days and wet‐related CEIs. Overall, EOS exhibited higher sensitivity to extreme temperature in boreal biomes than in temperate biomes. Specifically, continuous drought and high heat stress induced an earlier EOS in some temperate forest biomes, whereas moderate heat stress delayed the EOS in most study biomes. In contrast, EOS was not sensitive to extreme drought in water‐restricted biomes. Main conclusions EOS exhibited divergent responses to various climate extremes with different intensities and frequencies. Moreover, the response of EOS to extreme climate stress was dependent on the biome and latitude. These findings emphasize the importance of incorporating the divergent extreme climate effects into vegetation phenological models and Earth system models.
-
Abstract Background Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and achieving China's target to become carbon (C) neutral by 2060. However, changes in C storage and net primary production (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [evergreen broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios (RCP4.5 and RCP8.5). Results The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF NPP declines slightly over the period from 2014 to 2060. Conclusions The obtained results lead to conclusion that proper management of China’s subtropical secondary forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.
-
ABSTRACT The Arctic Ocean is one of the last frontiers on Earth with many unknowns about its geological and climate history and considerable speculation on its role in the Earth's climate and ocean system. It has been proposed recently that it was occupied by a freshwater body of more than 9.5 × 10 6 km 3 underneath a thick ice mass during part of glacial isotopic stages 6 and 4. We argue that such a dramatic scenario, implying replacement of marine waters by freshwater throughout the entire Arctic Ocean and Nordic Seas, is physically implausible. The very low 230 Th excesses ( 230 Th xs ) observed in sediments from these intervals were used as evidence for the presence of a U‐depleted overlying freshwater column. We show here that they may simply result from short, sporadic sedimentary pulses, below multiyear sea ice or ice shelves, linked to deglacial ice streaming and surging events interrupting long‐duration sedimentary gaps. Due to this sporadic sedimentation regime, interpolating time from 230 Th xs data or between benchmark ages in sedimentary sequences would simply be erroneous.