Votre recherche
Résultats 786 ressources
-
Abstract Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to assess potential impacts along with their probability distributions for example, land use planning and financial risk management. A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global TC model (the UQAM‐TCW model thereafter) that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate large samples of physically coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS. Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation. As an application of the model, we show global hazard maps for direct and indirect hits expressed in terms of return periods. The global TC model can be of interest to climate and environmental scientists, economists and financial risk managers. , Plain Language Summary Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a difficult task. Being able to randomly simulate TCs and their features (such as wind speed) with mathematical models is therefore critical to build scenarios (and their corresponding probability) for land use planning and financial risk management. A common approach is to simulate TCs by tracking them directly in climate model outputs but this often underestimates the frequency of intense TCs while being computationally costly overall to generate a large number of events. For these reasons, many authors have looked into alternative approaches that replicate key physical features of TCs but rather using statistical models that are much less computationally demanding. This paper therefore presents a global TC model that leverages the strengths of both statistical and climate models to simulate a large number of TCs whose features are consistent with the physics and observations. As an important global phenomenon that affects TCs globally, we also integrate in our model the effects of El Niño. The paper focuses on the methodology and validation of each model component and concludes with global hazard maps for direct and indirect hits. , Key Points We present a global tropical cyclone (TC) wind model built upon a climate model large ensemble that can be used for risk analysis We integrate ENSO into our model since it is a strong driver of storm annual frequency, cyclogenesis, trajectories, and intensity We present global hazard maps consistent with statistical features of TC components and coherent with a global climate model
-
Abstract We investigate the behaviour of the maximum likelihood estimator (MLE) for stochastic volatility jump-diffusion models commonly used in financial risk management. A simulation study shows the practical conditions under which the MLE behaves according to theory. In an extensive empirical study based on nine indices and more than 6000 individual stocks, we nonetheless find that the MLE is unable to replicate key higher moments. We then introduce a moment-targeted MLE – robust to model misspecification – and revisit both simulation and empirical studies. We find it performs better than the MLE, improving the management of financial risk.
-
Abstract There is mounting pressure on (re)insurers to quantify the impacts of climate change, notably on the frequency and severity of claims due to weather events such as flooding. This is however a very challenging task for (re)insurers as it requires modeling at the scale of a portfolio and at a high enough spatial resolution to incorporate local climate change effects. In this paper, we introduce a data science approach to climate change risk assessment of pluvial flooding for insurance portfolios over Canada and the United States (US). The underlying flood occurrence model quantifies the financial impacts of short-term (12–48 h) precipitation dynamics over the present (2010–2030) and future climate (2040–2060) by leveraging statistical/machine learning and regional climate models. The flood occurrence model is designed for applications that do not require street-level precision as is often the case for scenario and trend analyses. It is applied at the full scale of Canada and the US over 10–25 km grids. Our analyses show that climate change and urbanization will typically increase losses over Canada and the US, while impacts are strongly heterogeneous from one state or province to another, or even within a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on losses.
-
Abstract. Large-scale socioeconomic studies of the impacts of floods are difficult and costly for countries such as Canada and the United States due to the large number of rivers and size of watersheds. Such studies are however very important for analyzing spatial patterns and temporal trends to inform large-scale flood risk management decisions and policies. In this paper, we present different flood occurrence and impact models based upon statistical and machine learning methods of over 31 000 watersheds spread across Canada and the US. The models can be quickly calibrated and thereby easily run predictions over thousands of scenarios in a matter of minutes. As applications of the models, we present the geographical distribution of the modelled average annual number of people displaced due to flooding in Canada and the US, as well as various scenario analyses. We find for example that an increase of 10 % in average precipitation yields an increase in the displaced population of 18 % in Canada and 14 % in the US. The model can therefore be used by a broad range of end users ranging from climate scientists to economists who seek to translate climate and socioeconomic scenarios into flood probabilities and impacts measured in terms of the displaced population.
-
Abstract A global tropical cyclone precipitation dataset covering the period from January 1979 to February 2023 is presented. Global precipitation estimates were taken from the newly developed high-resolution Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) and TC tracks were obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) dataset. This Global Multi-Source Tropical Cyclone Precipitation (MSTCP) dataset is comprised of two main products and files in the format of tables: the main and profile datasets. The main file provides various TCP statistics per TC track, including mean and maximum precipitation rates over a fixed and symmetrical radius of 500 km. The profile dataset comprises the azimuthally averaged precipitation every 10-km away from the center of each storm (until 500 km). The case study of Hurricane Harvey is used to show that MSWEP estimates agree well with another commonly used satellite product. The main statistics of the dataset are analyzed as well, including the differences in the dataset metrics for each of the six TC basins and for each Saffir-Simpson category for storm intensity.
-
Data sets from CloudSat radar reflectivity and CALIPSO lidar backscattering measurements provide a new regard on Arctic and Antarctic winter cloud systems, as well as on the way aerosols determine their formation and evolution. Especially, links between the cloud ice crystal size and the surrounding aerosol field may be further investigated. In this study, the satellite observations are used to heuristically separate polar thin ice clouds into two crystal size categories, and an aerosol index based on the attenuated backscattering and color ratio of the sampled volumes is used for identifying haze in cloud‐free regions. Statistics from 386 Arctic satellite overpasses during January 2007 and from 379 overpasses over Antarctica during July 2007 reveal that sectors with the highest proportion of thin ice clouds having large ice crystals at their top are those for which the aerosol index is highest. Moreover, a weak but significant correlation between the cloud top ice effective radius and the above‐cloud aerosol index suggests that more polluted clouds tend to have higher ice effective radius, in 10 of the 11 sectors investigated. These results are interpreted in terms of a sulphate‐induced freezing inhibition effect.
-
The hypothesis according to which higher sulphate concentrations favor ice clouds made of larger ice crystals is tested using data sets from the CloudSat and Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites. This is a potential consequence of the sulphate‐induced freezing inhibition (SIFI) effect, namely, the hypothesis that sulphates contribute to inhibit the onset of ice crystal formation by deactivating ice‐forming nuclei during Arctic winter. A simple index based on the backscattering at 532 nm and the color ratio from the CALIPSO lidar measurements is compared against in situ sulphate concentration time series and used as a proxy for this variable. An algorithm using the lidar data and the CloudSat radar microphysical retrievals is also developed for identifying cloud types, focusing on those supposedly favored by the SIFI effect. The analysis includes the effect of the lidar off‐nadir angle on the sulphate index and the cloud classification, the validation of the index, as well as the production of circum‐Arctic maps of the sulphate index and of the SIFI‐favored clouds fraction. The increase of the lidar off‐nadir angle is shown to cause an increase in the measured depolarization ratio and hence in the ability to detect ice crystals. The index correlates positively with both sulphates and sea salt concentrations, with a Pearson correlation coefficient ( ) varying from 0.10 to 0.42 for the different comparisons performed. Ultimate findings are the results of two correlation tests of the SIFI effect, which allow for a new outlook on its possible role in the Arctic troposphere during winter.
-
Abstract. Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L−1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.
-
Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water (up to 75 nM) and the overlying atmosphere (up to 1 ppbv) in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source (with DMS concentrations of up to 6 nM and a potential contribution to atmospheric DMS of 20 % in the study area). (2) Evidence of widespread particle nucleation and growth in the marine boundary layer was found in the CAA in the summertime, with these events observed on 41 % of days in a 2016 cruise. As well, at Alert, Nunavut, particles that are newly formed and grown under conditions of minimal anthropogenic influence during the months of July and August are estimated to contribute 20 % to 80 % of the 30–50 nm particle number density. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from seabird-colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic aerosol (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds (OVOCs) were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms, with evidence for a dominant springtime contribution from eastern and southern Asia to the middle troposphere, and a major contribution from northern Asia to the surface. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow (0.03 cm s−1).
-
Abstract. In the Arctic, during polar night and early spring, ice clouds are separated into two leading types of ice clouds (TICs): (1) TIC1 clouds characterized by a large concentration of very small crystals and TIC2 clouds characterized by a low concentration of large ice crystals. Using a suitable parameterization of heterogeneous ice nucleation is essential for properly representing ice clouds in meteorological and climate models and subsequently understanding their interactions with aerosols and radiation. Here, we describe a new parameterization for ice crystal formation by heterogeneous nucleation in water-subsaturated conditions coupled to aerosol chemistry in the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). The parameterization is implemented in the Milbrandt and Yau (2005a, b) two-moment cloud microphysics scheme, and we assess how the WRF-Chem model responds to the run-time interaction between chemistry and the new parameterization. Well-documented reference cases provided us with in situ data from the spring 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) over Alaska. Our analysis reveals that the new parameterization clearly improves the representation of the ice water content (IWC) in polluted or unpolluted air masses and shows the poor performance of the reference parameterization in representing ice clouds with low IWC. The new parameterization is able to represent TIC1 and TIC2 microphysical characteristics at the top of the clouds, where heterogenous ice nucleation is most likely occurring, even with the known bias of simulated aerosols by WRF-Chem over the Arctic.
-
Abstract. Starphotometry, the night-time counterpart of sunphotometry, has not yet achieved the commonly sought observational error level of 1 %: a spectral optical depth (OD) error level of 0.01. In order to address this issue, we investigate a large variety of systematic (absolute) uncertainty sources. The bright-star catalogue of extraterrestrial references is noted as a major source of errors with an attendant recommendation that its accuracy, particularly its spectral photometric variability, be significantly improved. The small field of view (FOV) employed in starphotometry ensures that it, unlike sun- or moonphotometry, is only weakly dependent on the intrinsic and artificial OD reduction induced by scattering into the FOV by optically thin clouds. A FOV of 45 arcsec (arcseconds) was found to be the best trade-off for minimizing such forward-scattering errors concurrently with flux loss through vignetting. The importance of monitoring the sky background and using interpolation techniques to avoid spikes and to compensate for measurement delay was underscored. A set of 20 channels was identified to mitigate contamination errors associated with stellar and terrestrial atmospheric gas absorptions, as well as aurora and airglow emissions. We also note that observations made with starphotometers similar to our High Arctic instrument should be made at high angular elevations (i.e. at air masses less than 5). We noted the significant effects of snow crystal deposition on the starphotometer optics, how pseudo OD increases associated with this type of contamination could be detected, and how proactive techniques could be employed to avoid their occurrence in the first place. If all of these recommendations are followed, one may aspire to achieve component errors that are well below 0.01: in the process, one may attain a total 0.01 OD target error.
-
Abstract The increasing atmospheric nitrous oxide (N 2 O) concentration stems from the development of agriculture. However, N 2 O emissions from global rice‐based ecosystems have not been explicitly and systematically quantified. Therefore, this study aims to estimate the spatiotemporal magnitudes of the N 2 O emissions from global rice‐based ecosystems and determine different contribution factors by improving a process‐based biogeochemical model, TRIPLEX‐GHG v2.0. Model validation suggested that the modeled N 2 O agreed well with field observations under varying management practices at daily, seasonal, and annual steps. Simulated N 2 O emissions from global rice‐based ecosystems exhibited significant increasing trends from 0.026 ± 0.0013 to 0.18 ± 0.003 TgN yr −1 from 1910 to 2020, with ∼69.5% emissions attributed to the rice‐growing seasons. Irrigated rice ecosystems accounted for a majority of global rice N 2 O emissions (∼76.9%) because of their higher N 2 O emission rates than rainfed systems. Regarding spatial analysis, Southern China, Northeast India, and Southeast Asia are hotspots for rice‐based N 2 O emissions. Experimental scenarios revealed that N fertilizer is the largest global rice‐N 2 O source, especially since the 1960s (0.047 ± 0.010 TgN yr −1 , 35.24%), while the impact of expanded irrigation plays a minor role. Overall, this study provides a better understanding of the rice‐based ecosystem in the global agricultural N 2 O budget; further, it quantitively demonstrated the central role of N fertilizer in rice‐based N 2 O emissions by including rice crop calendars, covering non‐rice growing seasons, and differentiating the effects of various water regimes and input N forms. Our findings emphasize the significance of co‐management of N fertilizer and water regimes in reducing the net climate impact of global rice cultivation. , Plain Language Summary Nitrous oxide (N 2 O) is a greenhouse gas with ∼300 times greater effect on climate warming than carbon dioxide. Global croplands represent the largest source of anthropogenic N 2 O emissions. However, the contribution of global rice‐based cropping ecosystems to the N 2 O budget remains largely uncertain because of inconsistent observed results. Inspired by the increasing availability of reliable global data sets, we improved and applied a process‐based biogeochemical model by describing the dynamics of various microbial activities to simulate N 2 O emissions from rice‐based ecosystems on a global scale. Model simulations showed that 0.18 million tons of N 2 O‐N were emitted from global rice‐based N 2 O emissions in the 2010s, which was five times larger than that in the 1910s. In the context of regional contribution, southern China, northern India, and Southeast Asia are responsible for more than 80% of the total emissions during 1910–2020. Results suggest that N fertilizer is the most important rice‐N 2 O source quantitively and that increasing irrigation exerts a buffering effect. This study confirmed the potential mitigating effect of co‐managing N fertilizer and irrigation on mitigating rice‐based N 2 O emissions globally. , Key Points N 2 O emissions from global rice‐based ecosystem increased from 0.026 to 0.18 TgN yr −1 between 1910 and 2020 Irrigated rice‐based ecosystems showed larger N 2 O fluxes than rainfed rice globally due to higher N fertilizer use and frequent aerations N fertilizer represents the largest N 2 O source, and co‐management of N fertilizer and flooding regimes is important for mitigation
-
Paleobotanists have long built leaf climate models based on site mean of leaf physiognomic characteristics of woody dicotyledons species (WDS) for estimating past climate. To explore the potential of the order Ericales in estimating paleoclimate, we developed two linear models for each climatic factor. One is based on WDS, and the other is based on both WDS and leaf physiognomic characters of the order Ericales (WDS-E). We found that, compared with WDS models, WDS-E models improved greatly in mean annual precipitation (MAP), growing season precipitation (GSP) and mean annual range in temperature (MART). When the minimum species number of the order Ericales is three per site, the WDS-E models improved the r2 from 0.64 to 0.78 for MART, from 0.23 to 0.61 for ln(MAP), and from 0.37 to 0.64 for ln(GSP) compared with the WDS models. For mean annual temperature (MAT), the WDS-E model (r2 = 0.86) also exhibited a moderate improvement in precision over the WDS model (r2 = 0.82). This study demonstrates that other patterns, such as those of the order Ericales, can contribute additional information towards building more precise paleoclimate models.
-
Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.
-
Carbon allocation is an important mechanism through which plants respond to environmental changes. To enhance our understanding of maximizing carbon uptake by controlling planting densities, the carbon allocation module of a process-based model, TRIPLEX-Management, was modified and improved by introducing light, soil water, and soil nitrogen availability factors to quantify the allocation coefficients for different plant organs. The modified TRIPLEX-Management model simulation results were verified against observations from northern Jiangsu Province, China, and then the model was used to simulate dynamic changes in forest carbon under six density scenarios (200, 400, 600, 800, 1000, and 1200 stems ha−1). The mean absolute errors between the predicted and observed variables of the mean diameter at breast height, mean height, and estimated aboveground biomass ranged from 15.0% to 26.6%, and were lower compared with the original model simulated results, which ranged from 24.4% to 60.5%. The normalized root mean square errors ranged from 0.2 to 0.3, and were lower compared with the original model simulated results, which ranged from 0.3 to 0.6. The Willmott index between the predicted and observed variables also varied from 0.5 to 0.8, indicating that the modified TRIPLEX-Management model could accurately simulate the dynamic changes in poplar (Populus spp.) plantations with different densities in northern Jiangsu Province. The density scenario results showed that the leaf and fine root allocation coefficients decreased with the increase in stand density, while the stem allocation increased. Overall, our study showed that the optimum stand density (approximately 400 stems ha−1) could reach the highest aboveground biomass for poplar stands and soil organic carbon storage, leading to higher ecological functions related to carbon sequestration without sacrificing wood production in an economical way in northern Jiangsu Province. Therefore, reasonable density control with different soil and climate conditions should be recommended to maximize carbon sequestration.
-
Many hypotheses have been proposed to explain elevational species richness patterns; however, evaluating their importance remains a challenge, as mountains that are nested within different biogeographic regions have different environmental attributes. Here, we conducted a comparative study for trees, shrubs, herbs, and ferns along the same elevational gradient for 22 mountains worldwide, examining the performance of hypotheses of energy, tolerance, climatic variability, and spatial area to explain the elevational species richness patterns for each plant group. Results show that for trees and shrubs, energy-related factors exhibit greater explanatory power than other factors, whereas the factors that are associated with climatic variability performed better in explaining the elevational species richness patterns of herbs and ferns. For colder mountains, energy-related factors emerged as the main drivers of woody species diversity, whereas in hotter and wetter ecosystems, temperature and precipitation were the most important predictors of species richness along elevational gradients. For herbs and ferns, the variation in species richness was less than that of woody species. These findings provide important evidence concerning the generality of the energy theory for explaining the elevational species richness pattern of plants, highlighting that the underlying mechanisms may change among different growth form groups and regions within which mountains are nested.