Votre recherche
Résultats 786 ressources
-
Background: Although floods may have important respiratory health impacts, few studies have examined this issue. This study aims to document the long-term impacts of the spring floods of 2019 in Quebec by (1) describing the population affected by the floods; (2) assessing the impacts on the respiratory system according to levels of exposure; and (3) determining the association between stressors and respiratory health. Methods: A population health survey was carried out across the six most affected regions 8–10 months post-floods. Data were collected on self-reported otolaryngology (ENT) and respiratory symptoms, along with primary and secondary stressors. Three levels of exposure were examined: flooded, disrupted and unaffected. Results: One in ten respondents declared being flooded and 31.4% being disrupted by the floods. Flooded and disrupted participants reported significantly more ENT symptoms (adjusted odds ratio (aOR): 3.18; 95% CI: 2.45–4.14; aOR: 1.76; 95% CI: 1.45–2.14) and respiratory symptoms (aOR: 3.41; 95% CI: 2.45–4.75; aOR: 1.45; 95% CI: 1.10–1.91) than the unaffected participants. All primary stressors and certain secondary stressors assessed were significantly associated with both ENT and respiratory symptoms, but no “dose–response” gradient could be observed. Conclusion: This study highlights the long-term adverse effects of flood exposure on respiratory health.
-
Abstract Studies have estimated the impact of the environment on malaria incidence although few have explored the differential impact due to malaria control interventions. Therefore, the objective of the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were extracted from remote sensing sources and averaged over different time periods. General linear mixed models were constructed for each sub-counties based on a log-binomial distribution. The influence of IRS was analysed by comparing marginal effects of environment in models adjusted and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and magnitude of environmental associations with malaria risk were observed between sub-counties. IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% [0.03–0.08] to RR = 0.35, CI95% [0.28–0.42]). Model adjustment for this intervention changed the magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. This study evaluated the potential influence of IRS in the malaria-environment association and highlighted the necessity to control for interventions when they are performed to properly estimate the environmental influence on malaria. Local models are more informative to guide intervention program compared to national models.
-
Abstract The contraction of species range is one of the most significant symptoms of biodiversity loss worldwide. While anthropogenic activities and habitat alteration are major threats for several species, climate change should also be considered. For species at risk, differentiating the effects of human disturbances and climate change on past and current range transformations is an important step towards improved conservation strategies. We paired historical range maps with global atmospheric reanalyses from different sources to assess the potential effects of recent climate change on the observed northward contraction of the range of boreal populations of woodland caribou ( Rangifer tarandus caribou ) in Quebec (Canada) since 1850. We quantified these effects by highlighting the discrepancies between different southern limits of the caribou's range (used as references) observed in the past and reconstitutions obtained through the hindcasting of the climate conditions within which caribou are currently found. Hindcasted southern limits moved ~105 km north over time under all reanalysis datasets, a trend drastically different from the ~620 km reported for observed southern limits since 1850. The differences in latitudinal shift through time between the observed and hindcasted southern limits of distribution suggest that caribou range recession should have been only 17% of what has been observed since 1850 if recent climate change had been the only disturbance driver. This relatively limited impact of climate reinforces the scientific consensus stating that caribou range recession in Quebec is mainly caused by anthropogenic drivers (i.e. logging, development of the road network, agriculture, urbanization) that have modified the structure and composition of the forest over the past 160 years, paving the way for habitat‐mediated apparent competition and overharvesting. Our results also call for a reconsideration of past ranges in models aiming at projecting future distributions, especially for endangered species.
-
Polar lows (PLs) are maritime mesoscale cyclones associated with severe weather. They develop during marine cold air outbreaks near coastlines and the sea ice edge. Unfortunately, our knowledge about the mechanisms leading to PL development is still incomplete. This study aims to provide a detailed analysis of the development mechanisms of a PL that formed over the Norwegian Sea on 25 March 2019 using the output of a simulation with the sixth version of the Canadian Regional Climate Model (CRCM6/GEM4), a convection-permitting model. First, the life cycle of the PL is described and the vertical wind shear environment is analysed. Then, the horizontal wind divergence and the baroclinic conversion term are computed, and a surface pressure tendency equation is developed. In addition, the roles of atmospheric static stability, latent heat release, and surface heat and moisture fluxes are explored. The results show that the PL developed in a forward-shear environment and that moist baroclinic instability played a major role in its genesis and intensification. Baroclinic instability was initially only present at low levels of the atmosphere, but later extended upward until it reached the mid-troposphere. Whereas the latent heat of condensation and the surface heat fluxes also contributed to the development of the PL, convective available potential energy and barotropic conversion do not seem to have played a major role in its intensification. In conclusion, this study shows that a convection-permitting model simulation is a powerful tool to study the details of the structure of PLs, as well as their development mechanisms.
-
In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.
-
Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.
-
Purpose The current pandemic and ongoing climate risks highlight the limited capacity of various systems, including health and social ones, to respond to population-scale and long-term threats. Practices to reduce the impacts on the health and well-being of populations must evolve from a reactive mode to preventive, proactive and concerted actions beginning at individual and community levels. Experiences and lessons learned from the pandemic will help to better prevent and reduce the psychosocial impacts of floods, or other hydroclimatic risks, in a climate change context. Design/methodology/approach The present paper first describes the complexity and the challenges associated with climate change and systemic risks. It also presents some systemic frameworks of mental health determinants, and provides an overview of the different types of psychosocial impacts of disasters. Through various Quebec case studies and using lessons learned from past and recent flood-related events, recommendations are made on how to better integrate individual and community factors in disaster response. Findings Results highlight the fact that people who have been affected by the events are significantly more likely to have mental health problems than those not exposed to flooding. They further demonstrate the adverse and long-term effects of floods on psychological health, notably stemming from indirect stressors at the community and institutional levels. Different strategies are proposed from individual-centered to systemic approaches, in putting forward the advantages from intersectoral and multirisk researches and interventions. Originality/value The establishment of an intersectoral flood network, namely the InterSectoral Flood Network of Québec (RIISQ), is presented as an interesting avenue to foster interdisciplinary collaboration and a systemic view of flood risks. Intersectoral work is proving to be a major issue in the management of systemic risks, and should concern communities, health and mental health professionals, and the various levels of governance. As climate change is called upon to lead to more and more systemic risks, close collaboration between all the areas concerned with the management of the factors of vulnerability and exposure of populations will be necessary to respond effectively to damages and impacts (direct and indirect) linked to new meteorological and compound hazards. This means as well to better integrate the communication managers into the risk management team.
-
Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.
-
The 2023 wildfire season in Québec set records due to extreme warm and dry conditions, burning 4.5 million hectares and indicating persistent and escalating impacts associated with climate change. This study reviews the unusual weather conditions that led to the fires, discussing their extensive impacts on the forest sector, fire management, boreal caribou habitats, and particularly the profound effects on First Nation communities. The wildfires led to significant declines in forest productivity and timber supply, overwhelming fire management resources, and necessitating widespread evacuations. First Nation territories were dramatically altered, facing severe air quality issues and disruptions. While caribou impacts were modest across the province, the broader ecological, economical, and social repercussions were considerable. To mitigate future extreme wildfire seasons, the study suggests changes in forest management practices to increase forest resilience and resistance, adapting industrial structures to changes in wood type harvested, and enhancing fire suppression and risk management strategies. It calls for a comprehensive, unified approach to risk management that incorporates the lessons learned from the 2023 fire season and accounts for ongoing climate change. The studyunderscores the urgent need for detailed planning and proactive measures to reduce the growing risks and impacts of wildfires in a changing climate.
-
Abstract Many studies have projected malaria risks with climate change scenarios by modelling one or two environmental variables and without the consideration of malaria control interventions. We aimed to predict the risk of malaria with climate change considering the influence of rainfall, humidity, temperatures, vegetation, and vector control interventions (indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN)). We used negative binomial models based on weekly malaria data from six facility-based surveillance sites in Uganda from 2010–2018, to estimate associations between malaria, environmental variables and interventions, accounting for the non-linearity of environmental variables. Associations were applied to future climate scenarios to predict malaria distribution using an ensemble of Regional Climate Models under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Predictions including interaction effects between environmental variables and interventions were also explored. The results showed upward trends in the annual malaria cases by 25% to 30% by 2050s in the absence of intervention but there was great variability in the predictions (historical vs RCP 4.5 medians [Min–Max]: 16,785 [9,902–74,382] vs 21,289 [11,796–70,606]). The combination of IRS and LLIN, IRS alone, and LLIN alone would contribute to reducing the malaria burden by 76%, 63% and 35% respectively. Similar conclusions were drawn from the predictions of the models with and without interactions between environmental factors and interventions, suggesting that the interactions have no added value for the predictions. The results highlight the need for maintaining vector control interventions for malaria prevention and control in the context of climate change given the potential public health and economic implications of increasing malaria in Uganda.
-
Storms are the most significant meteorological phenomena that affect the formation of coasts and human livelihood along them. Thus, risks related to coastal storms, such as flooding, loss of land, shipping, and other offshore activity, have had a significant influence on coastal societies and their economies. In the early 21st century, anthropogenic climate change will affect the locations and intensities of coastal storminess, impacting society. Storms are studied not only by natural scientists but also by social scientists. The former deal with the climatologies, dynamics, and mechanisms of storms but also with the identification of different types of storms, such as extratropical baroclinic storms, explosive cyclones, tropical storms, polar lows, medicanes, Vb-cyclones, and Australian east coast storms. Their significance is often through their physical impacts, in particular ocean waves and storm surges, which were and are associated with massive losses of lives, sometimes up to several hundred thousand people, and wealth. The perceptions of what storms constitute were different in different cultural contexts and times. In earlier days, higher forces were responsible for such storms, which they used to transfer messages to humans, physically based ideas have been forming since the 16th century. Another significant historical development was societies preparing to reduce their vulnerability to storms and to implement practices of insurance and risk management.
-
Abstract The climate of the eastern seaboard of Australia is strongly influenced by the passage of low pressure systems over the adjacent Tasman Sea due to their associated precipitation and their potential to develop into extreme weather events. The aim of this study is to quantify differences in the climatology of east coast lows derived from the use of six global reanalyses. The methodology is explicitly designed to identify differences between reanalyses arising from differences in their horizontal resolution and their structure (type of forecast model, assimilation scheme, and the kind and number of observations assimilated). As a basis for comparison, reanalysis climatologies are compared with an observation-based climatology. Results show that reanalyses, specially high-resolution products, lead to very similar climatologies of the frequency, intensity, duration, and size of east coast lows when using spatially smoothed (about 300-km horizontal grid meshes) mean sea level pressure fields as input data. Moreover, at these coarse horizontal scales, monthly, interannual, and spatial variabilities appear to be very similar across the various reanalyses with a generally stronger agreement between winter events compared with summer ones. Results also show that, when looking at cyclones using reanalysis data at their native resolution (approaching 50-km grid spacing for the most recent products), uncertainties related to the frequency, intensity, and size of lows are very large and it is not clear which reanalysis, if any, gives a better description of cyclones. Further work is needed in order to evaluate the usefulness of the finescale information in modern reanalyses and to better understand the sources of their differences.