UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliography
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Langue de la ressource
  • Anglais

Résultats 786 ressources

Ajouts récentsDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • ...
  • 15
  • 16
  • 17
  • 18
  • 19
  • ...
  • 40
  • Page 17 de 40
Résumés
  • Deng, L., Huang, C., Kim, D., Shangguan, Z., Wang, K., Song, X., & Peng, C. (2020). Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2 O flux and greater stimulation of the calculated C pools. Global Change Biology, 26(4), 2613–2629. https://doi.org/10.1111/gcb.14970

    Abstract The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO 2 , CH 4 and N 2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH 4 uptake decreased by 6.0%. Furthermore, the percentage increase in N 2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver ( Ecology Letters , 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha −1  year −1 per kg N ha −1  year −1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO 2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO 2 /year. It also increased net soil GHG emissions by 10.20 Pg CO 2 ‐Geq (CO 2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.

    Consulter le document
  • He, Y., Peng, S., Liu, Y., Li, X., Wang, K., Ciais, P., Arain, M. A., Fang, Y., Fisher, J. B., Goll, D., Hayes, D., Huntzinger, D. N., Ito, A., Jain, A. K., Janssens, I. A., Mao, J., Matteo, C., Michalak, A. M., Peng, C., … Zhu, Q. (2020). Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 26(3), 1474–1484. https://doi.org/10.1111/gcb.14816

    Abstract Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).

    Consulter sur onlinelibrary.wiley.com
  • Song, X., Peng, C., Ciais, P., Li, Q., Xiang, W., Xiao, W., Zhou, G., & Deng, L. (2020). Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Science Advances, 6(12), eaaw5790. https://doi.org/10.1126/sciadv.aaw5790

    Moso bamboo forests have greater net carbon uptake benefits with increasing nitrogen deposition in the coming decades. , Atmospheric nitrogen (N) deposition affects the greenhouse gas (GHG) balance of ecosystems through the net atmospheric CO 2 exchange and the emission of non-CO 2 GHGs (CH 4 and N 2 O). We quantified the effects of N deposition on biomass increment, soil organic carbon (SOC), and N 2 O and CH 4 fluxes and, ultimately, the net GHG budget at ecosystem level of a Moso bamboo forest in China. Nitrogen addition significantly increased woody biomass increment and SOC decomposition, increased N 2 O emission, and reduced soil CH 4 uptake. Despite higher N 2 O and CH 4 fluxes, the ecosystem remained a net GHG sink of 26.8 to 29.4 megagrams of CO 2 equivalent hectare −1 year −1 after 4 years of N addition against 22.7 hectare −1 year −1 without N addition. The total net carbon benefits induced by atmospheric N deposition at current rates of 30 kilograms of N hectare −1 year −1 over Moso bamboo forests across China were estimated to be of 23.8 teragrams of CO 2 equivalent year −1 .

    Consulter le document
  • Wu, C., Chen, Y., Hong, X., Liu, Z., & Peng, C. (2020). Evaluating soil nutrients of Dacrydium pectinatum in China using machine learning techniques. Forest Ecosystems, 7(1), 30. https://doi.org/10.1186/s40663-020-00232-5

    Abstract Background The accurate estimation of soil nutrient content is particularly important in view of its impact on plant growth and forest regeneration. In order to investigate soil nutrient content and quality for the natural regeneration of Dacrydium pectinatum communities in China, designing advanced and accurate estimation methods is necessary. Methods This study uses machine learning techniques created a series of comprehensive and novel models from which to evaluate soil nutrient content. Soil nutrient evaluation methods were built by using six support vector machines and four artificial neural networks. Results The generalized regression neural network model was the best artificial neural network evaluation model with the smallest root mean square error (5.1), mean error (− 0.85), and mean square prediction error (29). The accuracy rate of the combined k -nearest neighbors ( k -NN) local support vector machines model (i.e. k -nearest neighbors -support vector machine (KNNSVM)) for soil nutrient evaluation was high, comparing to the other five partial support vector machines models investigated. The area under curve value of generalized regression neural network (0.6572) was the highest, and the cross-validation result showed that the generalized regression neural network reached 92.5%. Conclusions Both the KNNSVM and generalized regression neural network models can be effectively used to evaluate soil nutrient content and quality grades in conjunction with appropriate model variables. Developing a new feasible evaluation method to assess soil nutrient quality for Dacrydium pectinatum , results from this study can be used as a reference for the adaptive management of rare and endangered tree species. This study, however, found some uncertainties in data acquisition and model simulations, which will be investigated in upcoming studies.

    Consulter le document
  • Li, T., Ge, L., Huang, J., Yuan, X., Peng, C., Wang, S., Bu, Z., Zhu, Q., Wang, Z., Liu, W., & Wang, M. (2020). Contrasting responses of soil exoenzymatic interactions and the dissociated carbon transformation to short- and long-term drainage in a minerotrophic peatland. Geoderma, 377, 114585. https://doi.org/10.1016/j.geoderma.2020.114585
    Consulter sur linkinghub.elsevier.com
  • Song, H., Huang, J., Ge, L., Peng, C., Zhao, P., Guo, X., Li, T., Shen, X., Zhu, Q., Liu, W., Wei, H., & Wang, M. (2020). Interspecific difference in N:P stoichiometric homeostasis drives nutrient release and soil microbial community composition during decomposition. Plant and Soil, 452(1–2), 29–42. https://doi.org/10.1007/s11104-020-04513-4
    Consulter sur link.springer.com
  • Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper, A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S., Luo, Y., … Zhu, Q. (2020). Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? Global Change Biology, 26(6), 3336–3355. https://doi.org/10.1111/gcb.15024

    Abstract Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.

    Consulter le document
  • Zhang, M., Chen, S., Jiang, H., Peng, C., Zhang, J., & Zhou, G. (2020). The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest. Ecological Modelling, 435, 109248. https://doi.org/10.1016/j.ecolmodel.2020.109248
    Consulter sur linkinghub.elsevier.com
  • Liu, Y., Zhu, G., Hai, X., Li, J., Shangguan, Z., Peng, C., & Deng, L. (2020). Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecological Engineering, 142, 105631. https://doi.org/10.1016/j.ecoleng.2019.105631
    Consulter sur linkinghub.elsevier.com
  • He, M., Bräuning, A., Rossi, S., Gebrekirstos, A., Grießinger, J., Mayr, C., Peng, C., & Yang, B. (2021). No evidence for carryover effect in tree rings based on a pulse-labelling experiment on Juniperus communis in South Germany. Trees, 35(2), 493–502. https://doi.org/10.1007/s00468-020-02051-1
    Consulter sur link.springer.com
  • Wu, F., Peng, C., Liu, W., Liu, Z., Wang, H., Chen, D., & Li, Y. (2021). Effects of Nitrogen Additions on Soil Respiration in an Asian Tropical Montane Rainforest. Forests, 12(6), 802. https://doi.org/10.3390/f12060802

    Understanding the impacts of nitrogen (N) addition on soil respiration (RS) and its temperature sensitivity (Q10) in tropical forests is very important for the global carbon cycle in a changing environment. Here, we investigated how RS respond to N addition in a tropical montane rainforest in Southern China. Four levels of N treatments (0, 25, 50, and 100 kg N ha−1 a−1 as control (CK), low N (N25), moderate N (N50), and high N (N100), respectively) were established in September 2010. Based on a static chamber-gas chromatography method, RS was measured from January 2015 to December 2018. RS exhibited significant seasonal variability, with low RS rates appeared in the dry season and high rates appeared in the wet season regardless of treatment. RS was significantly related to the measured soil temperature and moisture. Our results showed that soil RS increased after N additions, the mean annual RS was 7% higher in N25 plots, 8% higher in N50 plots, and 11% higher in N100 plots than that in the CK plots. However, the overall impacts of N additions on RS were statistically insignificant. For the entire study period, the CK, N25, N50, and N100 treatments yielded Q10 values of 2.27, 3.45, 4.11, and 2.94, respectively. N addition increased the temperature sensitivity (Q10) of RS. Our results suggest that increasing atmospheric N deposition may have a large impact on the stimulation of soil CO2 emissions from tropical rainforests in China.

    Consulter le document
  • Ren, P., Liu, Z., Zhou, X., Peng, C., Xiao, J., Wang, S., Li, X., & Li, P. (2021). Strong controls of daily minimum temperature on the autumn photosynthetic phenology of subtropical vegetation in China. Forest Ecosystems, 8(1), 31. https://doi.org/10.1186/s40663-021-00309-9

    Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGS sif and EGS evi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.

    Consulter le document
  • Yang, Y., Gou, R., Li, W., Kassout, J., Wu, J., Wang, L., Peng, C., & Lin, G. (2021). Leaf Trait Covariation and Its Controls: A Quantitative Data Analysis Along a Subtropical Elevation Gradient. Journal of Geophysical Research: Biogeosciences, 126(7), e2021JG006378. https://doi.org/10.1029/2021JG006378

    Abstract Elevation gradients are frequently treated as useful space‐for‐time substitutions for inferring trait variations in response to different environmental conditions. The independent variations in leaf traits in response to elevation are well understood, but far less is known about trait covariation and its controls. This limits our understanding of the principles and mechanisms of leaf trait covariation, especially along elevation gradients in subtropical forests. Here, we studied the covariation among seven functional traits, including leaf size (LS), leaf nitrogen per unit mass ( N mass ), leaf nitrogen per unit area ( N area ), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf thickness (LT) and the leaf internal‐to‐ambient CO 2 ratio ( C i : C a , termed χ ). Sampling was conducted on 41 species in a subtropical forest on Mount Huangshan, China, and the data were analyzed using multivariate analysis and variance partitioning procedures. We found that (a) The first three principal components captured 79% of the total leaf trait covariation, which was caused mainly by within site differences; (b) N mass and LDMC were positively correlated with soil water content (SW) and negatively correlated with vapor pressure deficit (VPD), while χ showed negative relationships with elevation; and (c) 78% of the variation in the studied plant functional traits could be explained by climate, soil, and family controls in combination, while family distribution was the most important determining factor for trait covariation along the elevation gradient. Our findings provide relevant insights into plant adaptation to environmental gradients and present useful guidelines for ecosystem management and planning. , Plain Language Summary Changes of plant functional traits along elevation gradient are important indicators which reflect the behaviors and adaptations of plants. In this study we first analyzed the dominant signals of seven leaf functional traits and then we depicted the response of seven traits to changing elevation environments, and finally we quantified the contributions of climate, soil, and vegetation distribution. Our findings validate the hypothesis that trait covariation, and thus adaptation, occurs in response to the elevation gradients that most plant species experience. , Key Points The first three principal components captured 79% of the total leaf trait covariation Leaf nitrogen content ( N mass ) and leaf dry mass content (LDMC) were positively correlated with soil water content and negatively correlated with vapor pressure deficit Vegetation (family) distribution was the most important determining factor for trait covariation along the elevation gradient

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Niu, Z., He, H., Peng, S., Ren, X., Zhang, L., Gu, F., Zhu, G., Peng, C., Li, P., Wang, J., Ge, R., Zeng, N., Zhu, X., Lv, Y., Chang, Q., Xu, Q., Zhang, M., & Liu, W. (2021). A Process‐Based Model Integrating Remote Sensing Data for Evaluating Ecosystem Services. Journal of Advances in Modeling Earth Systems, 13(6), e2020MS002451. https://doi.org/10.1029/2020MS002451

    Abstract Terrestrial ecosystems provide multiple services interacting in complex ways. However, most ecosystem services (ESs) models (e.g., InVEST and ARIES) ignored the relationships among ESs. Process‐based models can overcome this limitation, and the integration of ecological models with remote sensing data could greatly facilitate the investigation of the complex ecological processes. Therefore, based on the Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA) models, we developed a process‐based ES model (CEVSA‐ES) integrating remotely sensed leaf area index to evaluate four important ESs (i.e., productivity provision, carbon sequestration, water retention, and soil retention) at annual timescale in China. Compared to the traditional terrestrial biosphere models, the main innovation of CEVSA‐ES model was the consideration of soil erosion processes and its impact on carbon cycling. The new version also improved the carbon‐water cycle algorithms. Then, the Sobol and DEMC methods that integrated the CEVSA‐ES model with nine flux sites comprising 39 site‐years were used to identify and optimize parameters. Finally, the model using the optimized parameters was validated at 26 field sites comprising 135 site‐years. Simulation results showed good fits with ecosystem processes, explaining 95%, 92%, 76%, and 65% interannual variabilities of gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration, respectively. The CEVSA‐ES model performed well for productivity provision and carbon sequestration, which explained 96% and 81% of the spatial‐temporal variations of the observed annual productivity provision and carbon sequestration, respectively. The model also captured the interannual trends of water retention and soil erosion for most sites or basins. , Plain Language Summary Terrestrial ecosystems simultaneously provide multiple ecosystem services (ESs). The common environmental drivers and internal mechanisms lead to nonlinear and dynamic relationships among ESs. Assessing the spatiotemporal changes of ESs have recently emerged as an element of ecosystem management and environmental policies. However, appropriate methods linking ESs to biogeochemical and biophysical processes are still lacking. In this study, we developed a process‐based model Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA‐ES) that integrates remote sensing data for evaluating ESs. We first described the model framework and detailed algorithms of the processes related to ESs. Then a model‐fusion method was applied to optimize parameters to which the model was sensitive and to improve model performance based on multi‐source observational data. The calibrated CEVSA‐ES model showed good performance for carbon and water fluxes (i.e., gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration). The CEVSA‐ES model performed well for productivity provision, and carbon sequestration. It also captured the interannual trends of water retention and soil erosion for most sites or basins in Chinese terrestrial ecosystems. The CEVSA‐ES model not only has the potential to improve the accuracy of simulated ESs, but also can capture the relationships among ESs, which could support the trade‐offs and synergies among ESs. , Key Points We developed an ecosystem service model Carbon and Exchange between Vegetation, Soil, and Atmosphere‐ecosystem services (CEVSA‐ES) that integrates ecosystem processes with satellite‐based data Accounting for soil retention/erosion and its impact on carbon cycling was the main difference from other process‐based models The CEVSA‐ES model with optimized parameters explained 47%–96% of the spatial and temporal variations of four ecosystem services in China

    Consulter le document
  • Epule, T. E., Chehbouni, A., Dhiba, D., Etongo, D., Driouech, F., Brouziyne, Y., & Peng, C. (2021). Vulnerability of maize, millet, and rice yields to growing season precipitation and socio-economic proxies in Cameroon. PLOS ONE, 16(6), e0252335. https://doi.org/10.1371/journal.pone.0252335

    In sub-Saharan Africa growing season precipitation is affected by climate change. Due to this, in Cameroon, it is uncertain how some crops are vulnerable to growing season precipitation. Here, an assessment of the vulnerability of maize, millet, and rice to growing season precipitation is carried out at a national scale and validated at four sub-national scales/sites. The data collected were historical yield, precipitation, and adaptive capacity data for the period 1961–2019 for the national scale analysis and 1991–2016 for the sub-national scale analysis. The crop yield data were collected for maize, millet, and rice from FAOSTAT and the global yield gap atlas to assess the sensitivity both nationally and sub-nationally. Historical data on mean crop growing season and mean annul precipitation were collected from a collaborative database of UNDP/Oxford University and the climate portal of the World Bank to assess the exposure both nationally and sub-nationally. To assess adaptive capacity, literacy, and poverty rate proxies for both the national and regional scales were collected from KNOEMA and the African Development Bank. These data were analyzed using a vulnerability index that is based on sensitivity, exposure, and adaptive capacity. The national scale results show that millet has the lowest vulnerability index while rice has the highest. An inverse relationship between vulnerability and adaptive capacity is observed. Rice has the lowest adaptive capacity and the highest vulnerability index. Sub-nationally, this work has shown that northern maize is the most vulnerable crop followed by western highland rice. This work underscores the fact that at different scales, crops are differentially vulnerable due to variations in precipitation, temperature, soils, access to farm inputs, exposure to crop pest and variations in literacy and poverty rates. Therefore, caution should be taken when transitioning from one scale to another to avoid generalization. Despite these differences, in the sub-national scale, western highland rice is observed as the second most vulnerable crop, an observation similar to the national scale observation.

    Consulter le document
  • Wu, F., Cao, S., Cao, G., Chen, K., & Peng, C. (2021). The Characteristics and Seasonal Variation of Methane Fluxes From an Alpine Wetland in the Qinghai Lake watershed, China. Wetlands, 41(5), 53. https://doi.org/10.1007/s13157-021-01415-8
    Consulter sur link.springer.com
  • Zhan, W., Yang, Z., Liu, J., Chen, H., Yang, G., Zhu, E., Hu, J., Jiang, L., Liu, L., Zhu, D., He, Y., Zhao, C., Xue, D., & Peng, C. (2021). Effect of Grazing Intensities on Soil N2O Emissions from an Alpine Meadow of Zoige Plateau in China. Atmosphere, 12(5), 541. https://doi.org/10.3390/atmos12050541

    The alpine meadow of Zoige Plateau plays a key role in local livestock production of cattle and sheep. However, it remains unclear how animal grazing or its intensity affect nitrous oxide (N2O) emissions, and the main driving factors. A grazing experiment including four grazing intensities (G0, G0.7, G1.2, G1.6 yak ha−1) was conducted between January 2013 and December 2014 to evaluate the soil nitrous oxide (N2O) fluxes under different grazing intensities in an alpine meadow on the eastern Qinghai–Tibet Plateau of China. The N2O fluxes were examined with gas collected by the static chamber method and by chromatographic concentration analysis. N2O emissions in the growing seasons (from May to September) were lower than that in non-growing seasons (from October to April) in 2013, 1.94 ± 0.30 to 3.37 ± 0.56 kg N2O ha−1 yr−1. Annual mean N2O emission rates were calculated as 1.17 ± 0.50 kg N2O ha−1 yr−1 in non-grazing land (G0) and 1.94 ± 0.23 kg N2O ha−1 yr−1 in the grazing land (G0.7, G1.2, and G1.6). The annual mean N2O flux showed no significant differences between grazing treatments in 2013. However, there were significantly greater fluxes from the G0.7 treatment than from the G1.6 treatment in 2014, especially in the growing season. Over the two years, the soil N2O emission rate was significantly negatively correlated with soil water-filled pore space (WFPS) and dissolved organic carbon (DOC) content as well as positively correlated with soil available phosphorus (P). No relationship was observed between soil N2O emission rate and temperature or rainfall. Our results showed that the meadow soils acted as a source of N2O for most periods and turned into a weak sink of N2O later during the sampling period. Our results highlight the importance of proper grazing intensity in reducing N2O emissions from alpine meadow. The interaction between grazing intensity and N2O emissions should be of more concern during future management of pastures in Zoige Plateau.

    Consulter le document
  • Epule, T. E., Dhiba, D., Etongo, D., Peng, C., & Lepage, L. (2021). Identifying maize yield and precipitation gaps in Uganda. SN Applied Sciences, 3(5), 537. https://doi.org/10.1007/s42452-021-04532-5

    Abstract In sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.

    Consulter le document
  • Liu, C., Xiang, W., Xie, B., Ouyang, S., Zeng, Y., Lei, P., & Peng, C. (2021). Decoupling the Complementarity Effect and the Selection Effect on the Overyielding of Fine Root Production Along a Tree Species Richness Gradient in Subtropical Forests. Ecosystems, 24(3), 613–627. https://doi.org/10.1007/s10021-020-00538-z
    Consulter sur link.springer.com
  • You, C., Peng, C., Xu, Z., Liu, Y., Zhang, L., Yin, R., Liu, L., Li, H., Wang, L., Liu, S., Tan, B., & Kardol, P. (2021). Nitrogen addition mediates the response of foliar stoichiometry to phosphorus addition: a meta-analysis. Ecological Processes, 10(1), 58. https://doi.org/10.1186/s13717-021-00329-x

    Abstract Background Changes in foliar nitrogen (N) and phosphorus (P) stoichiometry play important roles in predicting the effects of global change on ecosystem structure and function. However, there is substantial debate on the effects of P addition on foliar N and P stoichiometry, particularly under different levels of N addition. Thus, we conducted a global meta-analysis to investigate how N addition alters the effects of P addition on foliar N and P stoichiometry across different rates and durations of P addition and plant growth types based on more than 1150 observations. Results We found that P addition without N addition increased foliar N concentrations, whereas P addition with N addition had no effect. The positive effects of P addition on foliar P concentrations were greater without N addition than with N addition. Additionally, the effects of P addition on foliar N, P and N:P ratios varied with the rate and duration of P addition. In particular, short-term or low-dose P addition with and without N addition increased foliar N concentration, and the positive effects of short-term or low-dose P addition on foliar P concentrations were greater without N addition than with N addition. The responses of foliar N and P stoichiometry of evergreen plants to P addition were greater without N addition than with N addition. Moreover, regardless of N addition, soil P availability was more effective than P resorption efficiency in predicting the changes in foliar N and P stoichiometry in response to P addition. Conclusions Our results highlight that increasing N deposition might alter the response of foliar N and P stoichiometry to P addition and demonstrate the important effect of the experimental environment on the results. These results advance our understanding of the response of plant nutrient use efficiency to P addition with increasing N deposition.

    Consulter le document
  • 1
  • ...
  • 15
  • 16
  • 17
  • 18
  • 19
  • ...
  • 40
  • Page 17 de 40
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2026-02-10 07 h 30 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (426)
  • Thériault, Julie M. (71)
  • Pausata, Francesco S.R. (63)
  • De Vernal, Anne (59)
  • Lucas-Picher, Philippe (43)
  • Di Luca, Alejandro (42)
  • Boudreault, Mathieu (32)
  • Gachon, Philippe (21)
  • Blanchet, Jean-Pierre (19)
  • Grenier, Patrick (14)

Type de ressource

  • Article de colloque (1)
  • Article de revue (760)
  • Chapitre de livre (4)
  • Jeu de données (17)
  • Livre (4)

Année de publication

  • Entre 1900 et 1999 (10)
    • Entre 1990 et 1999 (10)
      • 1995 (2)
      • 1998 (3)
      • 1999 (5)
  • Entre 2000 et 2026 (776)
    • Entre 2000 et 2009 (66)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (4)
      • 2004 (3)
      • 2005 (4)
      • 2006 (7)
      • 2007 (8)
      • 2008 (13)
      • 2009 (14)
    • Entre 2010 et 2019 (377)
      • 2010 (10)
      • 2011 (32)
      • 2012 (24)
      • 2013 (34)
      • 2014 (40)
      • 2015 (33)
      • 2016 (51)
      • 2017 (44)
      • 2018 (41)
      • 2019 (68)
    • Entre 2020 et 2026 (333)
      • 2020 (71)
      • 2021 (71)
      • 2022 (71)
      • 2023 (73)
      • 2024 (47)

Langue de la ressource

  • Anglais

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web