Votre recherche
Résultats 2 ressources
-
Abstract The path toward a warmer global climate is not smooth, but, rather, is made up of a succession of positive and negative temperature trends, with cooling having more chance to occur the shorter the time scale considered. In this paper, estimates of the probabilities of short-term cooling ( P cool ) during the period 2006–35 are performed for 5146 locations across Canada. Probabilities of cooling over durations from 5 to 25 yr come from an ensemble of 60 climate scenarios, based on three different methods using a gridded observational product and CMIP5 climate simulations. These methods treat interannual variability differently, and an analysis in hindcast mode suggests they are relatively reliable. Unsurprisingly, longer durations imply smaller P cool values; in the case of annual temperatures, the interdecile range of P cool values across Canada is, for example, ~2%–18% for 25 yr and ~40%–46% for 5 yr. Results vary slightly with the scenario design method, with similar geographical patterns emerging. With regards to seasonal influence, spring and winter are generally associated with higher P cool values. Geographical P cool patterns and their seasonality are explained in terms of the interannual variability over background trend ratio. This study emphasizes the importance of natural variability superimposed on anthropogenically forced long-term trends and the fact that regional and local short-term cooling trends are to be expected with nonnegligible probabilities.