Votre recherche
Résultats 7 ressources
-
Climate change is likely to lead to an increased frequency of droughts and floods, both of which are implicated in large-scale carbon allocation and tree mortality worldwide. Non-structural carbohydrates (NSCs) play an important role in tree survival under stress, but how NSC allocation changes in response to drought or waterlogging is still unclear. We measured soluble sugars (SS) and starch in leaves, twigs, stems and roots of Robinia pseudoacacia L. seedlings that had been subjected to a gradient in soil water availability from extreme drought to waterlogged conditions for a period of 30 days. Starch concentrations decreased and SS concentrations increased in tissues of R. pseudoacacia seedlings, such that the ratio of SS to starch showed a progressive increase under both drought and waterlogging stress. The strength of the response is asymmetric, with the largest increase occurring under extreme drought. While the increase in SS concentration in response to extreme drought is the largest in roots, the increase in the ratio of SS to starch is the largest in leaves. Individual components of SS showed different responses to drought and waterlogging across tissues: glucose concentrations increased significantly with drought in all tissues but showed little response to waterlogging in twigs and stems; sucrose and fructose concentrations showed marked increases in leaves and roots in response to drought but a greater response to drought and waterlogging in stems and twigs. These changes are broadly compatible with the roles of individual SS under conditions of water stress. While it is important to consider the role of NSC in buffering trees against mortality under stress, modelling this behaviour is unlikely to be successful unless it accounts for different responses within organs and the type of stress involved.
-
Methane accounts for 20% of the global warming caused by greenhouse gases, and wastewater is a major anthropogenic source of methane. Based on the Intergovernmental Panel on Climate Change greenhouse gas inventory guidelines and current research findings, we calculated the amount of methane emissions from 2000 to 2014 that originated from wastewater from different provinces in China. Methane emissions from wastewater increased from 1349.01 to 3430.03 Gg from 2000 to 2014, and the mean annual increase was 167.69 Gg. The methane emissions from industrial wastewater treated by wastewater treatment plants ( E It ) accounted for the highest proportion of emissions. We also estimated the future trend of industrial wastewater methane emissions using the artificial neural network model. A comparison of the emissions for the years 2020, 2010, and 2000 showed an increasing trend in methane emissions in China and a spatial transition of industrial wastewater emissions from eastern and southern regions to central and southwestern regions and from coastal regions to inland regions. These changes were caused by changes in economics, demographics, and relevant policies. , Key Points Methane emission from wastewater from 2000 to 2014 was calculated to increase from 1349.01 Gg to 3430.03 Gg. Methane emission from wastewater from 2015 to 2020 was estimated to increase from 3875.30 Gg to 5212.75 Gg. A spatial transition of methane emission from wastewater was found and discussed in the present study.
-
Abstract Nitrous oxide (N 2 O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N 2 O fluxes and the key drivers of N 2 O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N 2 O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N 2 O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N 2 O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N 2 O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N 2 O dynamics; and 3) provide a benchmarking estimate of N 2 O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N 2 O estimation derived from the NMIP is a key component of the global N 2 O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative.
-
Abstract. Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon–water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.