Votre recherche
Résultats 7 ressources
-
Abstract Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process‐based model TRIPLEX‐GHG was developed by coupling it with the new MEND (Microbial‐ENzyme‐mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX‐MICROBE) shows considerable improvement over the previous version (TRIPLEX‐GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well‐regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral‐associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles. , Key Points Traditional soil carbon models are lacking in their representation of key microbial processes that control the soil carbon response to global climate change A Ecosystem model (TRIPLEX‐MICROBE) offers considerable improvement over a previous version (TRIPLEX‐GHG) in simulating soil organic carbon Our work is the first step toward a new generation of ecosystem process models that integrate key microbial processes into soil carbon cycles
-
Abstract Biome‐specific soil respiration (Rs) has important yet different roles in both the carbon cycle and climate change from regional to global scales. To date, no comparable studies related to global biome‐specific Rs have been conducted applying comprehensive global Rs databases. The goal of this study was to develop artificial neural network ( ANN ) models capable of spatially estimating global Rs and to evaluate the effects of interannual climate variations on 10 major biomes. We used 1976 annual Rs field records extracted from global Rs literature to train and test the ANN models. We determined that the best ANN model for predicting biome‐specific global annual Rs was the one that applied mean annual temperature ( MAT ), mean annual precipitation ( MAP ), and biome type as inputs ( r 2 = 0.60). The ANN models reported an average global Rs of 93.3 ± 6.1 Pg C yr −1 from 1960 to 2012 and an increasing trend in average global annual Rs of 0.04 Pg C yr −1 . Estimated annual Rs increased with increases in MAT and MAP in cropland, boreal forest, grassland, shrubland, and wetland biomes. Additionally, estimated annual Rs decreased with increases in MAT and increased with increases in MAP in desert and tundra biomes, and only significantly decreased with increases in MAT ( r 2 = 0.87) in the savannah biome. The developed biome‐specific global Rs database for global land and soil carbon models will aid in understanding the mechanisms underlying variations in soil carbon dynamics and in quantifying uncertainty in the global soil carbon cycle. , Key Points Predict biome‐specific global soil respiration from 1960 to 2012 using an artificial neural network model Prediction determined an average global soil respiration of 93.3 ± 6.1 Pg C yr −1 and an increasing trend of 0.04 Pg C yr −1 The 10 biome‐specific soil respiration estimates made it possible to trace different responses to global climate change in each biome
-
Abstract Methane (CH 4 ) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH 4 emissions. Decreased wetland CH 4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH 4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH 4 emissions to investigate the impacts of the ENSO on CH 4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH 4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH 4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH 4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH 4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH 4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH 4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.
-
Abstract Increasing atmospheric methane (CH 4 ) concentrations have contributed to approximately 20% of anthropogenic climate change. Despite the importance of CH 4 as a greenhouse gas, its atmospheric growth rate and dynamics over the past two decades, which include a stabilization period (1999–2006), followed by renewed growth starting in 2007, remain poorly understood. We provide an updated estimate of CH 4 emissions from wetlands, the largest natural global CH 4 source, for 2000–2012 using an ensemble of biogeochemical models constrained with remote sensing surface inundation and inventory-based wetland area data. Between 2000–2012, boreal wetland CH 4 emissions increased by 1.2 Tg yr −1 (−0.2–3.5 Tg yr −1 ), tropical emissions decreased by 0.9 Tg yr −1 (−3.2−1.1 Tg yr −1 ), yet globally, emissions remained unchanged at 184 ± 22 Tg yr −1 . Changing air temperature was responsible for increasing high-latitude emissions whereas declines in low-latitude wetland area decreased tropical emissions; both dynamics are consistent with features of predicted centennial-scale climate change impacts on wetland CH 4 emissions. Despite uncertainties in wetland area mapping, our study shows that global wetland CH 4 emissions have not contributed significantly to the period of renewed atmospheric CH 4 growth, and is consistent with findings from studies that indicate some combination of increasing fossil fuel and agriculture-related CH 4 emissions, and a decrease in the atmospheric oxidative sink.