Votre recherche
Résultats 7 ressources
-
Dynamic global vegetation models (DGVMs) typically track the material and energy cycles in ecosystems with finite plant functional types (PFTs). Increasingly, the community ecology and modelling studies recognize that current PFT scheme is not sufficient for simulating ecological processes. Recent advances in the study of plant functional traits (FTs) in community ecology provide a novel and feasible approach for the improvement of PFT-based DGVMs. This paper reviews the development of current DGVMs over recent decades. After characterizing the advantages and disadvantages of the PFT-based scheme, it summarizes trait-based theories and discusses the possibility of incorporating FTs into DGVMs. More importantly, this paper summarizes three strategies for constructing next-generation DGVMs with FTs. Finally, the method’s limitations, current challenges and future research directions for FT theory are discussed for FT theory. We strongly recommend the inclusion of several FTs, namely specific leaf area (SLA), leaf nitrogen content (LNC), carbon isotope composition of leaves (Leaf δ 13 C), the ratio between leaf-internal and ambient mole fractions of CO 2 (Leaf C i /C a ), seed mass and plant height. These are identified as the most important in constructing DGVMs based on FTs, which are also recognized as important ecological strategies for plants. The integration of FTs into dynamic vegetation models is a critical step towards improving the results of DGVM simulations; communication and cooperation among ecologists and modellers is equally important for the development of the next generation of DGVMs.
-
It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process‐based ecological models and data in cohesive, systematic ways. In process‐based model applications, inherent spatial and temporal heterogeneities found within terrestrial ecosystems may lead to the uncertainties of model predictions. To reduce simulation uncertainties due to inaccurate model parameters, the Markov Chain Monte Carlo (MCMC) method was applied in this study to improve the estimations of four key parameters used in the process‐based ecosystem model of TRIPLEX‐FLUX. These four key parameters include a maximum photosynthetic carboxylation rate of 25°C (Vmax), an electron transport (Jmax) light‐saturated rate within the photosynthetic carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration rate of 10°C (R10). Seven forest flux tower sites located across North America were used to investigate and facilitate understanding of the daily variation in model parameters for three deciduous forests, three evergreen temperate forests, and one evergreen boreal forest. Eddy covariance CO 2 exchange measurements were assimilated to optimize the parameters in the year 2006. After parameter optimization and adjustment took place, net ecosystem production prediction significantly improved (by approximately 25%) compared to the CO 2 flux measurements taken at the seven forest ecosystem sites. Results suggest that greater seasonal variability occurs in broadleaf forests in respect to the selected parameters than in needleleaf forests. This study also demonstrated that the model‐data fusion approach by incorporating MCMC method is able to better estimate parameters and improve simulation accuracy for different ecosystems located across North America.
-
Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245 T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48 T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44 T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.