Votre recherche
Résultats 102 ressources
-
Abstract Biome‐specific soil respiration (Rs) has important yet different roles in both the carbon cycle and climate change from regional to global scales. To date, no comparable studies related to global biome‐specific Rs have been conducted applying comprehensive global Rs databases. The goal of this study was to develop artificial neural network ( ANN ) models capable of spatially estimating global Rs and to evaluate the effects of interannual climate variations on 10 major biomes. We used 1976 annual Rs field records extracted from global Rs literature to train and test the ANN models. We determined that the best ANN model for predicting biome‐specific global annual Rs was the one that applied mean annual temperature ( MAT ), mean annual precipitation ( MAP ), and biome type as inputs ( r 2 = 0.60). The ANN models reported an average global Rs of 93.3 ± 6.1 Pg C yr −1 from 1960 to 2012 and an increasing trend in average global annual Rs of 0.04 Pg C yr −1 . Estimated annual Rs increased with increases in MAT and MAP in cropland, boreal forest, grassland, shrubland, and wetland biomes. Additionally, estimated annual Rs decreased with increases in MAT and increased with increases in MAP in desert and tundra biomes, and only significantly decreased with increases in MAT ( r 2 = 0.87) in the savannah biome. The developed biome‐specific global Rs database for global land and soil carbon models will aid in understanding the mechanisms underlying variations in soil carbon dynamics and in quantifying uncertainty in the global soil carbon cycle. , Key Points Predict biome‐specific global soil respiration from 1960 to 2012 using an artificial neural network model Prediction determined an average global soil respiration of 93.3 ± 6.1 Pg C yr −1 and an increasing trend of 0.04 Pg C yr −1 The 10 biome‐specific soil respiration estimates made it possible to trace different responses to global climate change in each biome
-
Abstract The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run‐off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run‐off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run‐off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run‐off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run‐off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run‐off, and the Zhemin hydrological region showed a significant increasing trend. Copyright © 2009 John Wiley & Sons, Ltd.
-
Wetlands are important modulators of atmospheric greenhouse gas (GHGs) concentrations. However, little is known about the magnitudes and spatiotemporal patterns of GHGs fluxes in wetlands on the Qinghai-Tibetan Plateau (QTP), the world’s largest and highest plateau. In this study, we measured soil temperature and the fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) in an alpine wetland on the QTP from April 2017 to April 2019 by the static chamber method, and from January 2017 to December 2017 by the eddy covariance (EC) method. The CO 2 and CH 4 emission measurements from both methods showed different relationships to soil temperature at different timescales (annual and seasonal). Based on such relationship patterns and soil temperature data (1960–2017), we extrapolated the CO 2 and CH 4 emissions of study site for the past 57 years: the mean CO 2 emission rate was 91.38 mg C m –2 h –1 on different measurement methods and timescales, with the range of the mean emission rate from 35.10 to 146.25 mg C m –2 h –1 , while the mean CH 4 emission rate was 2.75 mg C m –2 h –1 , with the ranges of the mean emission rate from 1.41 to 3.85 mg C m –2 h –1 . The estimated regional CO 2 and CH 4 emissions from permanent wetlands on the QTP were 94.29 and 2.37 Tg C year –1 , respectively. These results indicate that uncertainties caused by measuring method and timescale should be fully considered when extrapolating wetland GHGs fluxes from local sites to the regional level. Moreover, the results of global warming potential showed that CO 2 dominates the GHG balance of wetlands on the QTP.
-
Abstract Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-N mass -LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.
-
Tropical rainforest ecosystems are important when considering the global methane (CH4) budget and in climate change mitigation. However, there is a lack of direct and year-round observations of ecosystem-scale CH4 fluxes from tropical rainforest ecosystems. In this study, we examined the temporal variations in CH4 flux at the ecosystem scale and its annual budget and environmental controlling factors in a tropical rainforest of Hainan Island, China, using 3 years of continuous eddy covariance measurements from 2016 to 2018. Our results show that CH4 uptake generally occurred in this tropical rainforest, where strong CH4 uptake occurred in the daytime, and a weak CH4 uptake occurred at night with a mean daily CH4 flux of −4.5 nmol m−2 s−1. In this rainforest, the mean annual budget of CH4 for the 3 years was −1260 mg CH4 m−2 year−1. Furthermore, the daily averaged CH4 flux was not distinctly different between the dry season and wet season. Sixty-nine percent of the total variance in the daily CH4 flux could be explained by the artificial neural network (ANN) model, with a combination of air temperature (Tair), latent heat flux (LE), soil volumetric water content (VWC), atmospheric pressure (Pa), and soil temperature at −10 cm (Tsoil), although the linear correlation between the daily CH4 flux and any of these individual variables was relatively low. This indicates that CH4 uptake in tropical rainforests is controlled by multiple environmental factors and that their relationships are nonlinear. Our findings also suggest that tropical rainforests in China acted as a CH4 sink during 2016–2018, helping to counteract global warming.