Votre recherche
Résultats 2 ressources
-
Abstract Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process‐based model TRIPLEX‐GHG was developed by coupling it with the new MEND (Microbial‐ENzyme‐mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX‐MICROBE) shows considerable improvement over the previous version (TRIPLEX‐GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well‐regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral‐associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles. , Key Points Traditional soil carbon models are lacking in their representation of key microbial processes that control the soil carbon response to global climate change A Ecosystem model (TRIPLEX‐MICROBE) offers considerable improvement over a previous version (TRIPLEX‐GHG) in simulating soil organic carbon Our work is the first step toward a new generation of ecosystem process models that integrate key microbial processes into soil carbon cycles
-
Abstract Methane (CH 4 ) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH 4 emissions. Decreased wetland CH 4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH 4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH 4 emissions to investigate the impacts of the ENSO on CH 4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH 4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH 4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH 4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH 4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH 4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH 4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.