Votre recherche
Résultats 73 ressources
-
Abstract Climate change has a profound impact on the global carbon cycle, including effects on riverine carbon pools, which connect terrestrial, oceanic, and atmospheric carbon pools. Until now, terrestrial ecosystem models have rarely incorporated riverine carbon components into global carbon budgets. Here we developed a new process‐based model, TRIPLEX‐HYDRA (TRIPLEX‐hydrological routing algorithm), that considers the production, consumption, and transport processes of nonanthropogenic dissolved organic carbon (DOC) from soil to river ecosystems. After the parameter calibration, model results explained more than 50% of temporal variations in all but three rivers. Validation results suggested that DOC yield simulated by TRIPLEX‐HYDRA has a good fit ( R 2 = 0.61, n = 71, p < 0.001) with global river observations. And then, we applied this model for global rivers. We found that mean DOC yield of global river approximately 1.08 g C/m 2 year, where most high DOC yield appeared in the rivers from high northern or tropic regions. Furthermore, our results suggested that global riverine DOC flux appeared a significant decrease trend (average rate: 0.38 Pg C/year) from 1951 to 2015, although the variation patterns of DOC fluxes in global rivers are diverse. A decreasing trend in riverine DOC flux appeared in the middle and high northern latitude regions (30–90°N), which could be attributable to an increased flow path and DOC degradation during the transport process. Furthermore, increasing trend of DOC fluxes is found in rivers from tropical regions (30°S–30°N), which might be related to an increase in terrestrial organic carbon input. Many other rivers (e.g., Mississippi, Yangtze, and Lena rivers) experienced no significant changes under a changing environment. , Key Points Terrestrial ecosystem models rarely incorporate riverine DOC components into the global carbon cycle The TRIPLEX‐HYDRA model simulates the spatiotemporal variation in the DOC fluxes in global rivers The global riverine DOC flux simulated by the TRIPLEX‐HYDRA model has significantly decreased from 1951 to 2015
-
It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process‐based ecological models and data in cohesive, systematic ways. In process‐based model applications, inherent spatial and temporal heterogeneities found within terrestrial ecosystems may lead to the uncertainties of model predictions. To reduce simulation uncertainties due to inaccurate model parameters, the Markov Chain Monte Carlo (MCMC) method was applied in this study to improve the estimations of four key parameters used in the process‐based ecosystem model of TRIPLEX‐FLUX. These four key parameters include a maximum photosynthetic carboxylation rate of 25°C (Vmax), an electron transport (Jmax) light‐saturated rate within the photosynthetic carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration rate of 10°C (R10). Seven forest flux tower sites located across North America were used to investigate and facilitate understanding of the daily variation in model parameters for three deciduous forests, three evergreen temperate forests, and one evergreen boreal forest. Eddy covariance CO 2 exchange measurements were assimilated to optimize the parameters in the year 2006. After parameter optimization and adjustment took place, net ecosystem production prediction significantly improved (by approximately 25%) compared to the CO 2 flux measurements taken at the seven forest ecosystem sites. Results suggest that greater seasonal variability occurs in broadleaf forests in respect to the selected parameters than in needleleaf forests. This study also demonstrated that the model‐data fusion approach by incorporating MCMC method is able to better estimate parameters and improve simulation accuracy for different ecosystems located across North America.
-
Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.
-
Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.
-
Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGS sif and EGS evi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.
-
The boreal forests, identified as a critical “tipping element” of the Earth's climate system, play a critical role in the global carbon budget. Recent findings have suggested that terrestrial carbon sinks in northern high-latitude regions are weakening, but there has been little observational evidence to support the idea of a reduction of carbon sinks in northern terrestrial ecosystems. Here, we estimated changes in the biomass carbon sink of natural stands throughout Canada's boreal forests using data from long-term forest permanent sampling plots. We found that in recent decades, the rate of biomass change decreased significantly in western Canada (Alberta, Saskatchewan, and Manitoba), but there was no significant trend for eastern Canada (Ontario and Quebec). Our results revealed that recent climate change, and especially drought-induced water stress, is the dominant cause of the observed reduction in the biomass carbon sink, suggesting that western Canada's boreal forests may become net carbon sources if the climate change–induced droughts continue to intensify.
-
Methane accounts for 20% of the global warming caused by greenhouse gases, and wastewater is a major anthropogenic source of methane. Based on the Intergovernmental Panel on Climate Change greenhouse gas inventory guidelines and current research findings, we calculated the amount of methane emissions from 2000 to 2014 that originated from wastewater from different provinces in China. Methane emissions from wastewater increased from 1349.01 to 3430.03 Gg from 2000 to 2014, and the mean annual increase was 167.69 Gg. The methane emissions from industrial wastewater treated by wastewater treatment plants ( E It ) accounted for the highest proportion of emissions. We also estimated the future trend of industrial wastewater methane emissions using the artificial neural network model. A comparison of the emissions for the years 2020, 2010, and 2000 showed an increasing trend in methane emissions in China and a spatial transition of industrial wastewater emissions from eastern and southern regions to central and southwestern regions and from coastal regions to inland regions. These changes were caused by changes in economics, demographics, and relevant policies. , Key Points Methane emission from wastewater from 2000 to 2014 was calculated to increase from 1349.01 Gg to 3430.03 Gg. Methane emission from wastewater from 2015 to 2020 was estimated to increase from 3875.30 Gg to 5212.75 Gg. A spatial transition of methane emission from wastewater was found and discussed in the present study.
-
Satellite data are vital for understanding the large-scale spatial distribution of particulate matter (PM 2.5 ) due to their low cost, wide coverage, and all-weather capability. Estimation of PM 2.5 using satellite aerosol optical depth (AOD) products is a popular method. In this paper, we review the PM 2.5 estimation process based on satellite AOD data in terms of data sources (i.e., inversion algorithms, data sets, and interpolation methods), estimation models (i.e., statistical regression, chemical transport models, machine learning, and combinatorial analysis), and modeling validation (i.e., four types of cross-validation (CV) methods). We found that the accuracy of time-based CV is lower than others. We found significant differences in modeling accuracy between different seasons ( p < 0.01) and different spatial resolutions ( p < 0.01). We explain these phenomena in this article. Finally, we summarize the research process, present challenges, and future directions in this field. We opine that low-cost mobile devices combined with transfer learning or hybrid modeling offer research opportunities in areas with limited PM 2.5 monitoring stations and historical PM 2.5 estimation. These methods can be a good choice for air pollution estimation in developing countries. The purpose of this study is to provide a basic framework for future researchers to conduct relevant research, enabling them to understand current research progress and future research directions.
-
Plants interact to the seasonality of their environments, and changes in plant phenology have long been regarded as sensitive indicators of climatic change. Plant phenology modeling has been shown to be the simplest and most useful tool to assess phenol–climate shifts. Temperature, solar radiation, and water availability are assumed to be the key factors that control plant phenology. Statistical, mechanistic, and theoretical approaches have often been used for the parameterization of plant phenology models. The statistical approaches correlate the timing of phenological events to environmental factors or heat unit accumulations. The approaches have the simplified calculation procedures, correct phenological mechanism assumptions, but limited applications and predictive abilities. The mechanistic approaches describe plant phenology with the known or assumed “cause–effect relationships” between biological processes and key driving variables. The mechanistic approaches have the improved parameter processes, realistic assumptions, broad applications, and effective predictions. The theoretical approaches assume cost–benefit tradeoff strategies in trees. These methods are capable of capturing and quantifying the potential impacts and consequences of global climate change and human activity. However, certain limitations still exist related to our understanding of phenological mechanisms in relation to (1) interactions between plants and their specific climates, (2) the integration of both field observational and remote sensing data with plant phenology models across taxa and ecosystem type, (3) amplitude clarification of scale-related sensitivity to global climate change, and (4) improvements in parameterization processes and the overall reduction of modeling uncertainties to forecast impacts of future climate change on plant phenological dynamics. To improve our capacity in the prediction of the amplitude of plant phenological responses with regard to both structural and functional sensitivity to future global climate change, it is important to refine modeling methodologies by applying long-term and large-scale observational data. It is equally important to consider other less used but critical factors (such as heredity, pests, and anthropogenic drivers), apply advanced model parameterization and data assimilation techniques, incorporate process-based plant phenology models as a dynamic component into global vegetation dynamic models, and test plant phenology models against long-term ground observations and high-resolution satellite data across different spatial and temporal scales.