Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Zhou, Xiaolu"

Résultats 73 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • Page 2 de 4
Résumés
  • Zhao, S., Peng, C., Jiang, H., Tian, D., Lei, X., & Zhou, X. (2006). Land use change in Asia and the ecological consequences. Ecological Research, 21(6), 890–896. https://doi.org/10.1007/s11284-006-0048-2

    Abstract Viewed within a historical context, Asia has experienced dramatic land transformations, and currently more than 50% of Asian land area is under agriculture. The consequences of this transformation are manifold. Southeast Asia has the highest deforestation rate of any major tropical region. Many of the world's large rivers and lakes in Asia have been heavily degraded. About 11 of 19 world megacities with more than 10 million inhabitants are in Asia. These land use activities have resulted in substantial negative ecological consequences, including increased anthropogenic CO 2 emissions, deteriorated air and water quality, alteration of regional climate, an increase of disease and a loss of biodiversity. Although land use occurs at the local level, it has the potential to cause ecological impact across local, regional and global scales. Reducing the negative environmental impacts of land use change while maintaining economic viability and social acceptability is an major challenge for most developing countries in Asia.

    Consulter sur esj-journals.onlinelibrary.wiley.com
  • Ding, J., Zhu, Q., Li, H., Zhou, X., Liu, W., & Peng, C. (2022). Contribution of Incorporating the Phosphorus Cycle into TRIPLEX-CNP to Improve the Quantification of Land Carbon Cycle. Land, 11(6), 778. https://doi.org/10.3390/land11060778

    Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.

    Consulter sur www.mdpi.com
  • Ding, J., Zhu, Q., Li, H., Zhou, X., Liu, W., & Peng, C. (2022). Contribution of Incorporating the Phosphorus Cycle into TRIPLEX-CNP to Improve the Quantification of Land Carbon Cycle. Land, 11(6), 778. https://doi.org/10.3390/land11060778

    Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.

    Consulter sur www.mdpi.com
  • Meng, Y., Yang, M., Liu, S., Mou, Y., Peng, C., & Zhou, X. (2021). Quantitative assessment of the importance of bio-physical drivers of land cover change based on a random forest method. Ecological Informatics, 61, 101204. https://doi.org/10.1016/j.ecoinf.2020.101204
    Consulter sur linkinghub.elsevier.com
  • Yang, M., Mou, Y., Meng, Y., Liu, S., Peng, C., & Zhou, X. (2020). Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015. Science of The Total Environment, 711, 135139. https://doi.org/10.1016/j.scitotenv.2019.135139
    Consulter sur linkinghub.elsevier.com
  • Liu, W., Xu, J., Xie, X., Yan, Y., Zhou, X., & Peng, C. (2020). A new integrated framework to estimate the climate change impacts of biomass utilization for biofuel in life cycle assessment. Journal of Cleaner Production, 267, 122061. https://doi.org/10.1016/j.jclepro.2020.122061
    Consulter sur linkinghub.elsevier.com
  • Liu, S., Yang, M., Mou, Y., Meng, Y., Zhou, X., & Peng, C. (2020). Effect of Urbanization on Ecosystem Service Values in the Beijing-Tianjin-Hebei Urban Agglomeration of China from 2000 to 2014. Sustainability, 12(24), 10233. https://doi.org/10.3390/su122410233

    Rapid urbanization has led to the continuous deterioration of the surrounding natural ecosystem. It is important to identify the key urbanization factors that affect ecosystem services and analyze the potential effects of these factors on the ecosystem. We selected the Beijing, Tianjin, and Hebei (BTH) urban agglomeration to investigate these effects, and designed three indicators to map the urbanization level: Population density, gross domestic product (GDP) density, and the construction land proportion. Four indicators were chosen to quantify ecosystem services: Food production, carbon sequestration and oxygen production, water conservation, and soil conservation. To handle the nonlinear interactions, we used a random forest (RF) method to assess the effect of urbanization on ecosystem services in the BTH area from 2000 to 2014. Our study demonstrated that population density and economic growth were the internal driving forces affecting ecosystem services. We observed changing trends in the effect of urbanization: The effect of population density on ecosystem services increased, the effect of the proportion of construction land was consistent with population density, and the effect of GDP density on ecosystem services decreased. Our results suggest that controlling the population and GDP would significantly influence the sustainable development in large urban areas.

    Consulter sur www.mdpi.com
  • Zhou, X., Peng, C., Dang, Q.-L., Sun, J., Wu, H., & Hua, D. (2008). Simulating carbon exchange in Canadian Boreal forests. Ecological Modelling, 219(3–4), 287–299. https://doi.org/10.1016/j.ecolmodel.2008.07.011
    Consulter sur linkinghub.elsevier.com
  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., Song, X., & Zhou, X. (2012). Quantifying the effects of climate change and harvesting on carbon dynamics of boreal aspen and jack pine forests using the TRIPLEX-Management model. Forest Ecology and Management, 281, 152–162. https://doi.org/10.1016/j.foreco.2012.06.028
    Consulter sur linkinghub.elsevier.com
  • Liu, Z., Peng, C., De Grandpré, L., Candau, J.-N., Zhou, X., & Kneeshaw, D. (2018). Development of a New TRIPLEX-Insect Model for Simulating the Effect of Spruce Budworm on Forest Carbon Dynamics. Forests, 9(9), 513. https://doi.org/10.3390/f9090513

    The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.

    Consulter sur www.mdpi.com
  • Peng, C., Zhou, X., Zhao, S., Wang, X., Zhu, B., Piao, S., & Fang, J. (2009). Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change, 66(3–4), 179–194. https://doi.org/10.1016/j.gloplacha.2008.12.001
    Consulter sur linkinghub.elsevier.com
  • Sun, M., Li, P., Ren, P., Tang, J., Zhang, C., Zhou, X., & Peng, C. (2023). Divergent response of vegetation phenology to extreme temperatures and precipitation of different intensities on the Tibetan Plateau. Science China Earth Sciences, 66(10), 2200–2210. https://doi.org/10.1007/s11430-022-1156-1
    Consulter sur link.springer.com
  • Wang, K., Peng, C., Zhu, Q., Zhou, X., Wang, M., Zhang, K., & Wang, G. (2017). Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX‐GHG. Journal of Advances in Modeling Earth Systems, 9(6), 2368–2384. https://doi.org/10.1002/2017MS000920

    Abstract Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process‐based model TRIPLEX‐GHG was developed by coupling it with the new MEND (Microbial‐ENzyme‐mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX‐MICROBE) shows considerable improvement over the previous version (TRIPLEX‐GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well‐regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral‐associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles. , Key Points Traditional soil carbon models are lacking in their representation of key microbial processes that control the soil carbon response to global climate change A Ecosystem model (TRIPLEX‐MICROBE) offers considerable improvement over a previous version (TRIPLEX‐GHG) in simulating soil organic carbon Our work is the first step toward a new generation of ecosystem process models that integrate key microbial processes into soil carbon cycles

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Ren, P., Li, P., Tang, J., Li, T., Liu, Z., Zhou, X., & Peng, C. (2023). Satellite monitoring reveals short-term cumulative and time-lag effect of drought and heat on autumn photosynthetic phenology in subtropical vegetation. Environmental Research, 239, 117364. https://doi.org/10.1016/j.envres.2023.117364
    Consulter sur linkinghub.elsevier.com
  • Wang, M., Li, P., Peng, C., Xiao, J., Zhou, X., Luo, Y., & Zhang, C. (2022). Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes. Global Ecology and Biogeography, 31(11), 2281–2296. https://doi.org/10.1111/geb.13583

    Abstract Aim Compared with gradual climate change, extreme climatic events have more direct and dramatic impacts on vegetation growth. However, the influence of climate extremes on important phenological periods, such as the end of the growing season (EOS), remains unclear. Here, we investigate the temporal trends of EOS across different biomes and quantify the response of EOS to multiple climate extreme indices (CEIs). Location Northern middle and high latitudes. Time period 2000–2020. Major taxa studied Plants. Methods Three phenology extraction methods were used to compute EOS from satellite, FLUXNET and Pan European Phenology Project PEP725 phenological datasets. Different stress states of cold, hot, dry and wet extremes were represented by 12 CEIs. Partial correlation and ridge regression analysis were used to quantify the response of EOS to climate extremes across latitudinal and biome scales. Results Our study showed a delayed EOS in boreal biomes, but a significantly advanced EOS in temperate biomes. The advanced EOS induced by cold stress was observed for c . 80% of the vegetated pixels. The warm‐related CEIs delayed the EOS in high latitudes, and the delayed effect weakened or even reversed with decreasing latitude. In contrast, EOS exhibited opposite response patterns to dry days and wet‐related CEIs. Overall, EOS exhibited higher sensitivity to extreme temperature in boreal biomes than in temperate biomes. Specifically, continuous drought and high heat stress induced an earlier EOS in some temperate forest biomes, whereas moderate heat stress delayed the EOS in most study biomes. In contrast, EOS was not sensitive to extreme drought in water‐restricted biomes. Main conclusions EOS exhibited divergent responses to various climate extremes with different intensities and frequencies. Moreover, the response of EOS to extreme climate stress was dependent on the biome and latitude. These findings emphasize the importance of incorporating the divergent extreme climate effects into vegetation phenological models and Earth system models.

    Consulter sur onlinelibrary.wiley.com
  • Yang, M., Zhou, X., Liu, Z., Li, P., Tang, J., Xie, B., & Peng, C. (2022). A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests, 13(4), 616. https://doi.org/10.3390/f13040616

    Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.

    Consulter sur www.mdpi.com
  • Chen, K., Yang, M., Zhou, X., Liu, Z., Li, P., Tang, J., & Peng, C. (2022). Recent advances in carbon footprint studies of urban ecosystems: overview, application, and future challenges. Environmental Reviews, 30(2), 342–356. https://doi.org/10.1139/er-2021-0111

    Urban ecosystems are complex systems with anthropogenic features that generate considerable CO 2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods [life cycle assessment, input–output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.

    Consulter sur cdnsciencepub.com
  • Liu, Q., Peng, C., Schneider, R., Cyr, D., Liu, Z., Zhou, X., & Kneeshaw, D. (2021). TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation. Ecological Modelling, 455, 109652. https://doi.org/10.1016/j.ecolmodel.2021.109652
    Consulter sur linkinghub.elsevier.com
  • Li, P., Sun, M., Liu, Y., Ren, P., Peng, C., Zhou, X., & Tang, J. (2021). Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China. Remote Sensing, 13(18), 3722. https://doi.org/10.3390/rs13183722

    Urbanization can induce environmental changes such as the urban heat island effect, which in turn influence the terrestrial ecosystem. However, the effect of urbanization on the phenology of subtropical vegetation remains relatively unexplored. This study analyzed the changing trend of vegetation photosynthetic phenology in Dongting Lake basin, China, and its response to urbanization using nighttime light and chlorophyll fluorescence datasets. Our results indicated the start of the growing season (SOS) of vegetation in the study area was significantly advanced by 0.70 days per year, whereas the end of the growing season (EOS) was delayed by 0.24 days per year during 2000–2017. We found that urbanization promoted the SOS advance and EOS delay. With increasing urbanization intensity, the sensitivity of SOS to urbanization firstly increased then decreased, while the sensitivity of EOS to urbanization decreased with urbanization intensity. The climate sensitivity of vegetation phenology varied with urbanization intensity; urbanization induced an earlier SOS by increasing preseason minimum temperatures and a later EOS by increasing preseason precipitation. These findings improve our understanding of the vegetation phenology response to urbanization in subtropical regions and highlight the need to integrate human activities into future vegetation phenology models.

    Consulter sur www.mdpi.com
  • Li, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., & Zhang, K. (2020). The significant contribution of lake depth in regulating global lake diffusive methane emissions. Water Research, 172, 115465. https://doi.org/10.1016/j.watres.2020.115465
    Consulter sur linkinghub.elsevier.com
  • 1
  • 2
  • 3
  • 4
  • Page 2 de 4
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (69)

Type de ressource

  • Article de revue (73)

Année de publication

  • Entre 2000 et 2025 (73)
    • Entre 2000 et 2009 (12)
      • 2002 (2)
      • 2004 (1)
      • 2005 (1)
      • 2006 (2)
      • 2007 (1)
      • 2008 (3)
      • 2009 (2)
    • Entre 2010 et 2019 (26)
      • 2011 (2)
      • 2012 (4)
      • 2013 (3)
      • 2014 (1)
      • 2015 (1)
      • 2016 (2)
      • 2017 (2)
      • 2018 (3)
      • 2019 (8)
    • Entre 2020 et 2025 (35)
      • 2020 (7)
      • 2021 (7)
      • 2022 (9)
      • 2023 (8)
      • 2024 (4)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web