Votre recherche
Résultats 4 ressources
-
Drought has been one of the most important limiting factors for crop production, which deleteriously affects food security worldwide. The main objective of the present study was to quantitatively assess the effect of drought on the agronomic traits (e.g., plant height, biomass, yield, and yield components) of rice and wheat in combination with several moderators (e.g., drought stress intensity, rooting environment, and growth stage) using a meta-analysis study. The database was created from 55 published studies on rice and 60 published studies on wheat. The results demonstrated that drought decreased the agronomic traits differently between rice and wheat among varying growth stages. Wheat and rice yields decreased by 27.5% and 25.4%, respectively. Wheat grown in pots showed greater decreases in agronomic traits than those grown in the field. Rice showed opposite growing patterns when compared to wheat in rooting environments. The effect of drought on rice increased with plant growth and drought had larger detrimental influences during the reproductive phase (e.g., blooming stage, filling stage, and maturity). However, an exception was found in wheat, which had similar decreased performance during the complete growth cycle. Based on these results, future droughts could produce lower yields of rice and wheat when compared to the current drought.
-
Abstract Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr −1 , respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO 2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.