Votre recherche
Résultats 9 ressources
-
Abstract Aim Compared with gradual climate change, extreme climatic events have more direct and dramatic impacts on vegetation growth. However, the influence of climate extremes on important phenological periods, such as the end of the growing season (EOS), remains unclear. Here, we investigate the temporal trends of EOS across different biomes and quantify the response of EOS to multiple climate extreme indices (CEIs). Location Northern middle and high latitudes. Time period 2000–2020. Major taxa studied Plants. Methods Three phenology extraction methods were used to compute EOS from satellite, FLUXNET and Pan European Phenology Project PEP725 phenological datasets. Different stress states of cold, hot, dry and wet extremes were represented by 12 CEIs. Partial correlation and ridge regression analysis were used to quantify the response of EOS to climate extremes across latitudinal and biome scales. Results Our study showed a delayed EOS in boreal biomes, but a significantly advanced EOS in temperate biomes. The advanced EOS induced by cold stress was observed for c . 80% of the vegetated pixels. The warm‐related CEIs delayed the EOS in high latitudes, and the delayed effect weakened or even reversed with decreasing latitude. In contrast, EOS exhibited opposite response patterns to dry days and wet‐related CEIs. Overall, EOS exhibited higher sensitivity to extreme temperature in boreal biomes than in temperate biomes. Specifically, continuous drought and high heat stress induced an earlier EOS in some temperate forest biomes, whereas moderate heat stress delayed the EOS in most study biomes. In contrast, EOS was not sensitive to extreme drought in water‐restricted biomes. Main conclusions EOS exhibited divergent responses to various climate extremes with different intensities and frequencies. Moreover, the response of EOS to extreme climate stress was dependent on the biome and latitude. These findings emphasize the importance of incorporating the divergent extreme climate effects into vegetation phenological models and Earth system models.
-
Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.
-
Satellite data are vital for understanding the large-scale spatial distribution of particulate matter (PM 2.5 ) due to their low cost, wide coverage, and all-weather capability. Estimation of PM 2.5 using satellite aerosol optical depth (AOD) products is a popular method. In this paper, we review the PM 2.5 estimation process based on satellite AOD data in terms of data sources (i.e., inversion algorithms, data sets, and interpolation methods), estimation models (i.e., statistical regression, chemical transport models, machine learning, and combinatorial analysis), and modeling validation (i.e., four types of cross-validation (CV) methods). We found that the accuracy of time-based CV is lower than others. We found significant differences in modeling accuracy between different seasons ( p < 0.01) and different spatial resolutions ( p < 0.01). We explain these phenomena in this article. Finally, we summarize the research process, present challenges, and future directions in this field. We opine that low-cost mobile devices combined with transfer learning or hybrid modeling offer research opportunities in areas with limited PM 2.5 monitoring stations and historical PM 2.5 estimation. These methods can be a good choice for air pollution estimation in developing countries. The purpose of this study is to provide a basic framework for future researchers to conduct relevant research, enabling them to understand current research progress and future research directions.
-
Abstract Forest above‐ground biomass (AGB) is often estimated by converting the observed tree size using allometric scaling between the dry weight and size of an organism. However, the variations in biomass allocation and scaling between tree crowns and stems due to survival competition during a tree's lifecycle remain unclear. This knowledge gap can improve the understanding of modelling tree biomass allometry because traditional allometries ignore the dynamics of allocation. Herein, we characterised allometric scaling using the dynamic ratio ( r ) of the stem biomass (SB) to AGB and a dynamic exponent. The allometric models were biologically parameterised by the r values for initial, intermediate and final ages rather than only a regression result. The scaling was tested using field measurements of 421 species and 2213 different‐sized trees in pantropical regions worldwide. We found that the scaling fluctuated with tree size, and this fluctuation was driven by the trade‐off relationship of biomass allocation between the tree crown and stem depending on the dynamic crown trait. The allometric scaling between SB and AGB varied from 0.8 to 1.0 for a tree during its entire lifecycle. The fluctuations presented a general law for the allometric scaling of the pantropical tree biomass and size. Our model quantified the trade‐off and explained 94.1% of the allometric relationship between the SB and AGB (93.8% of which between D 2 H and AGB) for pantropical forests, which resulted in a better fit than that of the traditional model. Considering the effects of the trade‐off on modelling, the actual biomass of large trees could be substantially greater than conventional estimates. These results highlight the importance of coupling growth mechanisms in modelling allometry and provide a theoretical foundation for better describing and predicting forest carbon accumulation.
-
Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.
-
Abstract In recent decades, terrestrial vegetation in the northern hemisphere (NH) has been exposed to warming and more extremely high temperatures. However, the consequences of these changes for terrestrial vegetation growth remain poorly quantified and understood. By examining a satellite-based vegetation index, tree-ring measurements and land-surface model simulations, we discovered a consistent convex pattern in the responses of vegetation growth to temperature exposure (TE) for forest, shrub and grass in both the temperate (30°−50° N) and boreal (50°−70° N) NH during the period of 1982−2012. The response of vegetation growth to TE for the three vegetation types in both the temperate and boreal NH increased convergently with increasing temperature, until vegetation type-dependent temperature thresholds were reached. A TE beyond these temperature thresholds resulted in disproportionately weak positive or even strong negative responses. Vegetation growth in the boreal NH was more vulnerable to extremely high-temperature events than vegetation growth in the temporal NH. The non-linear responses discovered here provide new insights into the dynamics of northern terrestrial ecosystems in a warmer world.