Votre recherche
Résultat 1 ressource
-
Abstract Reconstructions of ocean primary productivity (PP) help to explain past and present biogeochemical cycles and climate changes in the oceans. We document PP variations over the last 50 kyr in a currently oligotrophic subtropical region, the Gulf of Cadiz. Data combine refined results from previous investigations on dinocyst assemblages, alkenones, and stable isotopes ( 18 O, 13 C) in planktonic ( Globigerina bulloides ) and endobenthic ( Uvigerina mediterranea ) foraminifera from cores MD04‐2805 CQ and MD99‐2339, with new isotopic measurements on epibenthic ( Cibicides pachyderma ‐ Cibicidoides wuellerstorfi ) foraminifera and dinocyst‐based estimates of PP using the new n = 1,968 modern database. We constrain PP variations and export production by integrating qualitative information from bioindicators with dinocyst‐based quantitative reconstructions such as PP and seasonal sea surface temperature and information about remineralization from the benthic Δδ 13 C (difference between epibenthic and endobenthic foraminiferal δ 13 C signatures). This study also includes new information on alkenone‐based SST and total organic carbon which provides insights into the relationship between past regional hydrological activity and PP regime change. We show that PP, carbon export, and remineralization were generally high in the NE subtropical Atlantic Ocean during the last glacial period and that the Last Glacial Maximum (LGM) had lower Δδ 13 C than the Heinrich Stadials with sustained high PP, likely allowing enhanced carbon sequestration. We link these PP periods to the dynamics of upwelling, active almost year‐round during sadials, but restricted to spring‐summer during interstadials and LGM, like today. During interstadials, nutrient advection through freshwater inputs during autumn‐winter needs also to be considered to fully understand PP regimes. , Key Points Productivity (PP) in the Gulf of Cadiz is dependent on the seasonality control for both upwelling and nutrient‐enriched freshwater inputs We show generally high PP, carbon export, and remineralization during the last glacial period at the study site The Last Glacial Maximum had lower Δδ 13 C than the Heinrich Stadials with sustained high PP likely allowing enhanced carbon sequestration