Votre recherche
Résultats 5 ressources
-
Abstract Stratospheric volcanic aerosol can have major impacts on global climate. Despite a consensus among studies on an El Niño‐like response in the first or second post‐eruption year, the mechanisms that trigger a change in the state of El Niño‐Southern Oscillation (ENSO) following volcanic eruptions are still debated. Here, we shed light on the processes that govern the ENSO response to tropical volcanic eruptions through a series of sensitivity experiments with an Earth System Model where a uniform stratospheric volcanic aerosol loading is imposed over different parts of the tropics. Three tropical mechanisms are tested: the “ocean dynamical thermostat” (ODT); the cooling of the Maritime Continent; and the cooling of tropical northern Africa (NAFR). We find that the NAFR mechanism plays the largest role, while the ODT mechanism is absent in our simulations as La Niña‐like rather than El‐Niño‐like conditions develop following a uniform radiative forcing over the equatorial Pacific. , Plain Language Summary Volcanic eruptions emit large quantity of sulfate aerosol up to the stratosphere. Such aerosol can alter global climate by interacting with solar radiation and in turn modifying atmospheric and ocean circulation. In particular, volcanic aerosol can alter the state of the El Niño‐Southern Oscillation (ENSO), the major mode of tropical climate variability. However, the mechanisms that trigger a change in the ENSO state following volcanic eruptions are still debated. In this study, we use an Earth System Model to revisit the main mechanisms that have been proposed to alter ENSO, causing positive temperature anomalies over the equatorial Pacific (EqPAC) Ocean. We tested three mechanisms: the “ocean dynamical thermostat” (ODT); the cooling of the Maritime Continent; and the cooling of tropical northern Africa (NAFR). Our experiments show that the NAFR mechanism plays the largest role, while the ODT mechanism is absent in our simulations as cold rather than warm develop over the EqPAC Ocean following the applied volcanic forcing. , Key Points Radiative cooling by volcanic aerosol over the tropical northern Africa triggers El Niño‐like conditions via atmospheric circulation changes The “ocean thermostat mechanism” is absent in our simulations when a uniform aerosol forcing is applied over the equatorial Pacific (EqPAC) The Maritime Continent cooling mechanism is not at play when the aerosol forcing extends over the entire EqPAC
-
Volcanic eruptions trigger ENSO response through shifts in the ITCZ and extratropical-to-tropical teleconnections. , The mechanisms through which volcanic eruptions affect the El Niño–Southern Oscillation (ENSO) state are still controversial. Previous studies have invoked direct radiative forcing, an ocean dynamical thermostat (ODT) mechanism, and shifts of the Intertropical Convergence Zone (ITCZ), among others, to explain the ENSO response to tropical eruptions. Here, these mechanisms are tested using ensemble simulations with an Earth system model in which volcanic aerosols from a Tambora-like eruption are confined either in the Northern or the Southern Hemisphere. We show that the primary drivers of the ENSO response are the shifts of the ITCZ together with extratropical circulation changes, which affect the tropics; the ODT mechanism does not operate in our simulations. Our study highlights the importance of initial conditions in the ENSO response to tropical volcanic eruptions and provides explanations for the predominance of posteruption El Niño events and for the occasional posteruption La Niña in observations and reconstructions.
-
Abstract Many Holocene hydroclimate records show rainfall changes that vary with local orbital insolation. However, some tropical regions display rainfall evolution that differs from gradual precessional pacing, suggesting that direct rainfall forcing effects were predominantly driven by sea-surface temperature thresholds or inter-ocean temperature gradients. Here we present a 12,000 yr continuous U/Th-dated precipitation record from a Guatemalan speleothem showing that Central American rainfall increased within a 2000 yr period from a persistently dry state to an active convective regime at 9000 yr BP and has remained strong thereafter. Our data suggest that the Holocene evolution of Central American rainfall was driven by exceeding a temperature threshold in the nearby tropical oceans. The sensitivity of this region to slow changes in radiative forcing is thus strongly mediated by internal dynamics acting on much faster time scales.
-
Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean–atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.