Votre recherche
Résultats 2 ressources
-
Abstract Biomass has been promoted as a promising energy resource to mitigate global climate change. To evaluate the contribution of biomass utilization to climate change mitigation under the “Grain for Green” program in Northern Shaanxi, China, a soil carbon dynamic model and a life cycle assessment model were integrated to examine the benefits of using Caragana korshinskii Kom. as an energy crop. We found that the annual dry biomass output is maintained at 0.7 Tg during the simulation period (2020–2097). Due to the compensatory effect of biomass regrowth, the global warming potential of biomass‐derived CO 2 emissions is approximately 0.045; therefore, the total annual biogenic CO 2 emission is 57,211 ± 6,168 Mg CO 2 eq. The total annual life cycle CO 2 emissions approach 867,072 Mg CO 2 eq yr −1 . Under the scenario of no biomass removal, final carbon storage ranges from 15.7 to 19.3 TgC, and the highest carbon sequestration rate is 0.47 TgC yr −1 . In comparison with the no biomass removal scenario, the carbon sequestration rate (close to 0 MgC yr −1 ) in the biomass utilization scenario indicates a carbon loss; however, a portion of the carbon loss (31.39–62.09%) can be offset by carbon emission reductions from the substitution of fossil fuels.