Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Yang, Yanzheng"
Année de publication
  • Entre 2000 et 2025

Résultats 20 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Yang, Y., Zhu, Q., Peng, C., Wang, H., & Chen, H. (2015). From plant functional types to plant functional traits: A new paradigm in modelling global vegetation dynamics. Progress in Physical Geography: Earth and Environment, 39(4), 514–535. https://doi.org/10.1177/0309133315582018

    Dynamic global vegetation models (DGVMs) typically track the material and energy cycles in ecosystems with finite plant functional types (PFTs). Increasingly, the community ecology and modelling studies recognize that current PFT scheme is not sufficient for simulating ecological processes. Recent advances in the study of plant functional traits (FTs) in community ecology provide a novel and feasible approach for the improvement of PFT-based DGVMs. This paper reviews the development of current DGVMs over recent decades. After characterizing the advantages and disadvantages of the PFT-based scheme, it summarizes trait-based theories and discusses the possibility of incorporating FTs into DGVMs. More importantly, this paper summarizes three strategies for constructing next-generation DGVMs with FTs. Finally, the method’s limitations, current challenges and future research directions for FT theory are discussed for FT theory. We strongly recommend the inclusion of several FTs, namely specific leaf area (SLA), leaf nitrogen content (LNC), carbon isotope composition of leaves (Leaf δ 13 C), the ratio between leaf-internal and ambient mole fractions of CO 2 (Leaf C i /C a ), seed mass and plant height. These are identified as the most important in constructing DGVMs based on FTs, which are also recognized as important ecological strategies for plants. The integration of FTs into dynamic vegetation models is a critical step towards improving the results of DGVM simulations; communication and cooperation among ecologists and modellers is equally important for the development of the next generation of DGVMs.

    Consulter sur journals.sagepub.com
  • Luo, Y., Chen, H., Zhu, Q., Peng, C., Yang, G., Yang, Y., & Zhang, Y. (2014). Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade. PLoS ONE, 9(8), e104013. https://doi.org/10.1371/journal.pone.0104013
    Consulter sur dx.plos.org
  • Shi, S., Peng, C., Wang, M., Zhu, Q., Yang, G., Yang, Y., Xi, T., & Zhang, T. (2016). A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant and Soil, 407(1–2), 323–340. https://doi.org/10.1007/s11104-016-2889-y
    Consulter sur link.springer.com
  • Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., & Yang, G. (2015). Estimating global natural wetland methane emissions using process modelling: spatio‐temporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 24(8), 959–972. https://doi.org/10.1111/geb.12307

    Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245  T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48  T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44  T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.

    Consulter sur onlinelibrary.wiley.com
  • Wang, Y., Hu, J., Yang, Y., Li, R., Peng, C., & Zheng, H. (2020). Climate Change Will Reduce the Carbon Use Efficiency of Terrestrial Ecosystems on the Qinghai-Tibet Plateau: An Analysis Based on Multiple Models. Forests, 12(1), 12. https://doi.org/10.3390/f12010012

    The carbon use efficiency (CUE) of ecosystems, expressed as the ratio of net primary production (NPP) and gross primary production (GPP), is extremely sensitive to climate change and has a great effect on the carbon cycles of terrestrial ecosystems. Climate change leads to changes in vegetation, resulting in different CUE values, especially on the Qinghai-Tibet Plateau, one of the most climate-sensitive regions in the world. However, the change trend and the intrinsic mechanism of climate effects on CUE in the future climate change scenario are not clear in this region. Based on the scheme of the coupled model intercomparison project (CMIP6), we analyze the simulation results of the five models of the scenario model intercomparison project (ScenarioMIP) under three different typical future climate scenarios, including SSP1-2.6, SSP3-7.0 and SSP5-8.5, on the Qinghai-Tibet Plateau in 2015–2100 with methods of model-averaging to average the long-term forecast of the five several well-known forecast models for three alternative climate scenarios with three radiative forcing levels to discuss the CUE changes and a structural equations modeling (SEM) approach to examine how the trends in GPP, NPP, and CUE related to different climate factors. The results show that (1) GPP and NPP demonstrated an upward trend in a long time series of 86 years, and the upward trend became increasingly substantial with the increase in radiation forcing; (2) the ecosystem CUE of the Qinghai-Tibet Plateau will decrease in the long time series in the future, and it shows a substantial decreasing trend with the increase in radiation forcing; and (3) the dominant climate factor affecting CUE is temperature of the factors included in these models, which affects CUE mainly through GPP and NPP to produce indirect effects. Temperature has a higher comprehensive effect on CUE than precipitation and CO2, which are negative effects on CUE on an annual scale. Our finding that the CUE decreases in the future suggests that we must pay more attention to the vegetation and CUE changes, which will produce great effects on the regional carbon dynamics and balance.

    Consulter sur www.mdpi.com
  • Li, M., Peng, C., Wang, M., Yang, Y., Zhang, K., Li, P., Yang, Y., Ni, J., & Zhu, Q. (2017). Spatial patterns of leaf δ13 C and its relationship with plant functional groups and environmental factors in China: Factors Dominate Plant Traits. Journal of Geophysical Research: Biogeosciences, 122(7), 1564–1575. https://doi.org/10.1002/2016JG003529
    Consulter sur doi.wiley.com
  • Zhang, T., Sun, R., Peng, C., Zhou, G., Wang, C., Zhu, Q., & Yang, Y. (2016). Integrating a model with remote sensing observations by a data assimilation approach to improve the model simulation accuracy of carbon flux and evapotranspiration at two flux sites. Science China Earth Sciences, 59(2), 337–348. https://doi.org/10.1007/s11430-015-5160-0
    Consulter sur link.springer.com
  • Li, M., Peng, C., Zhou, X., Yang, Y., Guo, Y., Shi, G., & Zhu, Q. (2019). Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth Systems, 11(2), 514–530. https://doi.org/10.1029/2018MS001363

    Abstract Climate change has a profound impact on the global carbon cycle, including effects on riverine carbon pools, which connect terrestrial, oceanic, and atmospheric carbon pools. Until now, terrestrial ecosystem models have rarely incorporated riverine carbon components into global carbon budgets. Here we developed a new process‐based model, TRIPLEX‐HYDRA (TRIPLEX‐hydrological routing algorithm), that considers the production, consumption, and transport processes of nonanthropogenic dissolved organic carbon (DOC) from soil to river ecosystems. After the parameter calibration, model results explained more than 50% of temporal variations in all but three rivers. Validation results suggested that DOC yield simulated by TRIPLEX‐HYDRA has a good fit ( R 2  = 0.61, n  = 71, p  < 0.001) with global river observations. And then, we applied this model for global rivers. We found that mean DOC yield of global river approximately 1.08 g C/m 2  year, where most high DOC yield appeared in the rivers from high northern or tropic regions. Furthermore, our results suggested that global riverine DOC flux appeared a significant decrease trend (average rate: 0.38 Pg C/year) from 1951 to 2015, although the variation patterns of DOC fluxes in global rivers are diverse. A decreasing trend in riverine DOC flux appeared in the middle and high northern latitude regions (30–90°N), which could be attributable to an increased flow path and DOC degradation during the transport process. Furthermore, increasing trend of DOC fluxes is found in rivers from tropical regions (30°S–30°N), which might be related to an increase in terrestrial organic carbon input. Many other rivers (e.g., Mississippi, Yangtze, and Lena rivers) experienced no significant changes under a changing environment. , Key Points Terrestrial ecosystem models rarely incorporate riverine DOC components into the global carbon cycle The TRIPLEX‐HYDRA model simulates the spatiotemporal variation in the DOC fluxes in global rivers The global riverine DOC flux simulated by the TRIPLEX‐HYDRA model has significantly decreased from 1951 to 2015

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Yang, Y., Gou, R., Li, W., Kassout, J., Wu, J., Wang, L., Peng, C., & Lin, G. (2021). Leaf Trait Covariation and Its Controls: A Quantitative Data Analysis Along a Subtropical Elevation Gradient. Journal of Geophysical Research: Biogeosciences, 126(7), e2021JG006378. https://doi.org/10.1029/2021JG006378

    Abstract Elevation gradients are frequently treated as useful space‐for‐time substitutions for inferring trait variations in response to different environmental conditions. The independent variations in leaf traits in response to elevation are well understood, but far less is known about trait covariation and its controls. This limits our understanding of the principles and mechanisms of leaf trait covariation, especially along elevation gradients in subtropical forests. Here, we studied the covariation among seven functional traits, including leaf size (LS), leaf nitrogen per unit mass ( N mass ), leaf nitrogen per unit area ( N area ), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf thickness (LT) and the leaf internal‐to‐ambient CO 2 ratio ( C i : C a , termed χ ). Sampling was conducted on 41 species in a subtropical forest on Mount Huangshan, China, and the data were analyzed using multivariate analysis and variance partitioning procedures. We found that (a) The first three principal components captured 79% of the total leaf trait covariation, which was caused mainly by within site differences; (b) N mass and LDMC were positively correlated with soil water content (SW) and negatively correlated with vapor pressure deficit (VPD), while χ showed negative relationships with elevation; and (c) 78% of the variation in the studied plant functional traits could be explained by climate, soil, and family controls in combination, while family distribution was the most important determining factor for trait covariation along the elevation gradient. Our findings provide relevant insights into plant adaptation to environmental gradients and present useful guidelines for ecosystem management and planning. , Plain Language Summary Changes of plant functional traits along elevation gradient are important indicators which reflect the behaviors and adaptations of plants. In this study we first analyzed the dominant signals of seven leaf functional traits and then we depicted the response of seven traits to changing elevation environments, and finally we quantified the contributions of climate, soil, and vegetation distribution. Our findings validate the hypothesis that trait covariation, and thus adaptation, occurs in response to the elevation gradients that most plant species experience. , Key Points The first three principal components captured 79% of the total leaf trait covariation Leaf nitrogen content ( N mass ) and leaf dry mass content (LDMC) were positively correlated with soil water content and negatively correlated with vapor pressure deficit Vegetation (family) distribution was the most important determining factor for trait covariation along the elevation gradient

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Zhao, J., Feng, X., Deng, L., Yang, Y., Zhao, Z., Zhao, P., Peng, C., & Fu, B. (2020). Quantifying the Effects of Vegetation Restorations on the Soil Erosion Export and Nutrient Loss on the Loess Plateau. Frontiers in Plant Science, 11, 573126. https://doi.org/10.3389/fpls.2020.573126

    The transport of eroded soil to rivers changes the nutrient cycles of river ecosystems and has significant impacts on the regional eco-environment and human health. The Loess Plateau, a leading vegetation restoration region in China and the world, has experienced severe soil erosion and nutrient loss, however, the extent to which vegetation restoration prevents soil erosion export (to rivers) and it caused nutrient loss is unknown. To evaluate the effects of the first stage of the Grain for Green Project (GFGP) on the Loess Plateau (started in 1999 and ended in 2013), we analyzed the vegetation change trends and quantified the effects of GFGP on soil erosion export (to rivers) and it caused nutrient loss by considering soil erosion processes. The results were as follows: (1) in the first half of study period (from 1982 to 1998), the vegetation cover changed little, but after the implementation of the first stage of the GFGP (from 1999 to 2013), the vegetation cover of 75.0% of the study area showed a significant increase; (2) The proportion of eroded areas decreased from 41.8 to 26.7% as a result of the GFGP, and the erosion intensity lessened in most regions; the implementation significantly reduce the soil nutrient loss; (3) at the county level, soil erosion export could be avoided significantly by the increasing of vegetation greenness in the study area ( R = −0.49). These results illustrate the relationships among changes in vegetation cover, soil erosion and nutrient export, which could provide a reference for local government for making ecology-relative policies.

    Consulter sur www.frontiersin.org
  • Yang, Y., Wang, H., Harrison, S. P., Prentice, I. C., Wright, I. J., Peng, C., & Lin, G. (2019). Quantifying leaf‐trait covariation and its controls across climates and biomes. New Phytologist, 221(1), 155–168. https://doi.org/10.1111/nph.15422

    Summary Plant functional ecology requires the quantification of trait variation and its controls. Field measurements on 483 species at 48 sites across China were used to analyse variation in leaf traits, and assess their predictability. Principal components analysis ( PCA ) was used to characterize trait variation, redundancy analysis ( RDA ) to reveal climate effects, and RDA with variance partitioning to estimate separate and overlapping effects of site, climate, life‐form and family membership. Four orthogonal dimensions of total trait variation were identified: leaf area ( LA ), internal‐to‐ambient CO 2 ratio (χ), leaf economics spectrum traits (specific leaf area ( SLA ) versus leaf dry matter content ( LDMC ) and nitrogen per area ( N area )), and photosynthetic capacities ( V cmax , J max at 25°C). LA and χ covaried with moisture index. Site, climate, life form and family together explained 70% of trait variance. Families accounted for 17%, and climate and families together 29%. LDMC and SLA showed the largest family effects. Independent life‐form effects were small. Climate influences trait variation in part by selection for different life forms and families. Trait values derived from climate data via RDA showed substantial predictive power for trait values in the available global data sets. Systematic trait data collection across all climates and biomes is still necessary.

    Consulter sur nph.onlinelibrary.wiley.com
  • Jiang, L., Chen, H., Zhu, Q., Yang, Y., Li, M., Peng, C., Zhu, D., & He, Y. (2019). Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau. Journal of Soils and Sediments, 19(1), 128–139. https://doi.org/10.1007/s11368-018-2006-3
    Consulter sur link.springer.com
  • Yang Yanzheng, 杨延征, Ma Yuandan, 马元丹, Jiang Hong, 江洪, Zhu Qiu’an, 朱求安, Liu Jinxun, 刘金勋, & Peng Changhui, 彭长辉. (2016). Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006 using Integrated Biosphere Simulator. Acta Ecologica Sinica, 36(13). https://doi.org/10.5846/stxb201410262092
    Consulter sur www.ecologica.cn
  • Zhang, J., Peng, C., Zhu, Q., Xue, W., Shen, Y., Yang, Y., Shi, G., Shi, S., & Wang, M. (2016). Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China. Atmospheric Environment, 142, 340–350. https://doi.org/10.1016/j.atmosenv.2016.08.011
    Consulter sur linkinghub.elsevier.com
  • Wang, K., Peng, C., Zhu, Q., Wang, M., Wang, G., Zhou, X., Yang, Y., Ding, J., & Wei, H. (2019). Changes in soil organic carbon and microbial carbon storage projected during the 21st century using TRIPLEX-MICROBE. Ecological Indicators, 98, 80–87. https://doi.org/10.1016/j.ecolind.2018.10.045
    Consulter sur linkinghub.elsevier.com
  • Yang, Y., Kang, L., Zhao, J., Qi, N., Li, R., Wen, Z., Kassout, J., Peng, C., Lin, G., & Zheng, H. (2021). Quantifying Leaf Trait Covariations and Their Relationships with Plant Adaptation Strategies along an Aridity Gradient. Biology, 10(10), 1066. https://doi.org/10.3390/biology10101066

    A trait-based approach is an effective way to quantify plant adaptation strategies in response to changing environments. Single trait variations have been well depicted before; however, multi-trait covariations and their roles in shaping plant adaptation strategies along aridity gradients remain unclear. The purpose of this study was to reveal multi-trait covariation characteristics, their controls and their relevance to plant adaptation strategies. Using eight relevant plant functional traits and multivariate statistical approaches, we found the following: (1) the eight studied traits show evident covariation characteristics and could be grouped into four functional dimensions linked to plant strategies, namely energy balance, resource acquisition, resource investment and water use efficiency; (2) leaf area (LA) together with traits related to the leaf economic spectrum, including leaf nitrogen content per area (Narea), leaf nitrogen per mass (Nmass) and leaf dry mass per area (LMA), covaried along the aridity gradient (represented by the moisture index, MI) and dominated the trait–environmental change axis; (3) together, climate, soil and family can explain 50.4% of trait covariations; thus, vegetation succession along the aridity gradient cannot be neglected in trait covariations. Our findings provide novel perspectives toward a better understanding of plant adaptations to arid conditions and serve as a reference for vegetation restoration and management programs in arid regions.

    Consulter sur www.mdpi.com
  • Yang, Y., Zhu, Q., Peng, C., Wang, H., Xue, W., Lin, G., Wen, Z., Chang, J., Wang, M., Liu, G., & Li, S. (2016). A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. Scientific Reports, 6(1), 24110. https://doi.org/10.1038/srep24110

    Abstract Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-N mass -LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

    Consulter sur www.nature.com
  • Shi, G., Peng, C., Wang, M., Shi, S., Yang, Y., Chu, J., Zhang, J., Lin, G., Shen, Y., & Zhu, Q. (2016). The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported from Three Chinese Rivers to the China Sea. PLOS ONE, 11(10), e0165039. https://doi.org/10.1371/journal.pone.0165039
    Consulter sur dx.plos.org
  • Yang, Y., Zhao, J., Zhao, P., Wang, H., Wang, B., Su, S., Li, M., Wang, L., Zhu, Q., Pang, Z., & Peng, C. (2019). Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China. Frontiers in Plant Science, 10, 908. https://doi.org/10.3389/fpls.2019.00908
    Consulter sur www.frontiersin.org
  • Zhu, Q., Peng, C., Liu, J., Jiang, H., Fang, X., Chen, H., Niu, Z., Gong, P., Lin, G., Wang, M., Wang, H., Yang, Y., Chang, J., Ge, Y., Xiang, W., Deng, X., & He, J.-S. (2016). Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 6(1), 38020. https://doi.org/10.1038/srep38020

    Abstract Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH 4 ) emissions in China is important for improving our knowledge on CH 4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH 4 model to quantify the human and climate change induced contributions to natural wetland CH 4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH 4 emissions reduction (0.92 TgCH 4 ), and climate change contributed 20.4% to the CH 4 emissions increase (0.31 TgCH 4 ), suggesting that decreasing CH 4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH 4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH 4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH 4 emissions estimation.

    Consulter sur www.nature.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 29/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (20)

Type de ressource

  • Article de revue (20)

Année de publication

  • Entre 2000 et 2025
    • Entre 2010 et 2019 (16)
      • 2014 (1)
      • 2015 (2)
      • 2016 (7)
      • 2017 (1)
      • 2019 (5)
    • Entre 2020 et 2025 (4)
      • 2020 (2)
      • 2021 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web