Votre recherche
Résultats 4 ressources
-
Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.
-
Abstract Forest above‐ground biomass (AGB) is often estimated by converting the observed tree size using allometric scaling between the dry weight and size of an organism. However, the variations in biomass allocation and scaling between tree crowns and stems due to survival competition during a tree's lifecycle remain unclear. This knowledge gap can improve the understanding of modelling tree biomass allometry because traditional allometries ignore the dynamics of allocation. Herein, we characterised allometric scaling using the dynamic ratio ( r ) of the stem biomass (SB) to AGB and a dynamic exponent. The allometric models were biologically parameterised by the r values for initial, intermediate and final ages rather than only a regression result. The scaling was tested using field measurements of 421 species and 2213 different‐sized trees in pantropical regions worldwide. We found that the scaling fluctuated with tree size, and this fluctuation was driven by the trade‐off relationship of biomass allocation between the tree crown and stem depending on the dynamic crown trait. The allometric scaling between SB and AGB varied from 0.8 to 1.0 for a tree during its entire lifecycle. The fluctuations presented a general law for the allometric scaling of the pantropical tree biomass and size. Our model quantified the trade‐off and explained 94.1% of the allometric relationship between the SB and AGB (93.8% of which between D 2 H and AGB) for pantropical forests, which resulted in a better fit than that of the traditional model. Considering the effects of the trade‐off on modelling, the actual biomass of large trees could be substantially greater than conventional estimates. These results highlight the importance of coupling growth mechanisms in modelling allometry and provide a theoretical foundation for better describing and predicting forest carbon accumulation.