Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Xiang, Wenhua"

Résultats 40 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • Page 2 de 2
Résumés
  • Zhu, W., Xiang, W., Pan, Q., Zeng, Y., Ouyang, S., Lei, P., Deng, X., Fang, X., & Peng, C. (2016). Spatial and seasonal variations of leaf area index (LAI) in subtropicalsecondary forests related to floristic composition and stand characters. Biogeosciences, 13(12), 3819–3831. https://doi.org/10.5194/bg-13-3819-2016

    Abstract. Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana–Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber–Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber–C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

    Consulter sur bg.copernicus.org
  • Zhao, M., Peng, C., Xiang, W., Deng, X., Tian, D., Zhou, X., Yu, G., He, H., & Zhao, Z. (2013). Plant phenological modeling and its application in global climate change research: overview and future challenges. Environmental Reviews, 21(1), 1–14. https://doi.org/10.1139/er-2012-0036

    Plants interact to the seasonality of their environments, and changes in plant phenology have long been regarded as sensitive indicators of climatic change. Plant phenology modeling has been shown to be the simplest and most useful tool to assess phenol–climate shifts. Temperature, solar radiation, and water availability are assumed to be the key factors that control plant phenology. Statistical, mechanistic, and theoretical approaches have often been used for the parameterization of plant phenology models. The statistical approaches correlate the timing of phenological events to environmental factors or heat unit accumulations. The approaches have the simplified calculation procedures, correct phenological mechanism assumptions, but limited applications and predictive abilities. The mechanistic approaches describe plant phenology with the known or assumed “cause–effect relationships” between biological processes and key driving variables. The mechanistic approaches have the improved parameter processes, realistic assumptions, broad applications, and effective predictions. The theoretical approaches assume cost–benefit tradeoff strategies in trees. These methods are capable of capturing and quantifying the potential impacts and consequences of global climate change and human activity. However, certain limitations still exist related to our understanding of phenological mechanisms in relation to (1) interactions between plants and their specific climates, (2) the integration of both field observational and remote sensing data with plant phenology models across taxa and ecosystem type, (3) amplitude clarification of scale-related sensitivity to global climate change, and (4) improvements in parameterization processes and the overall reduction of modeling uncertainties to forecast impacts of future climate change on plant phenological dynamics. To improve our capacity in the prediction of the amplitude of plant phenological responses with regard to both structural and functional sensitivity to future global climate change, it is important to refine modeling methodologies by applying long-term and large-scale observational data. It is equally important to consider other less used but critical factors (such as heredity, pests, and anthropogenic drivers), apply advanced model parameterization and data assimilation techniques, incorporate process-based plant phenology models as a dynamic component into global vegetation dynamic models, and test plant phenology models against long-term ground observations and high-resolution satellite data across different spatial and temporal scales.

    Consulter sur www.nrcresearchpress.com
  • Zhao, M., Xiang, W., Deng, X., Tian, D., Huang, Z., Zhou, X., Yu, G., He, H., & Peng, C. (2013). Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, southern China. Ecological Modelling, 250, 58–71. https://doi.org/10.1016/j.ecolmodel.2012.10.011
    Consulter sur linkinghub.elsevier.com
  • Yang, M., Mou, Y., Liu, S., Meng, Y., Liu, Z., Li, P., Xiang, W., Zhou, X., & Peng, C. (2022). Detecting and mapping tree crowns based on convolutional neural network and Google Earth images. International Journal of Applied Earth Observation and Geoinformation, 108, 102764. https://doi.org/10.1016/j.jag.2022.102764
    Consulter sur linkinghub.elsevier.com
  • Zeng, Y., Wu, H., Ouyang, S., Chen, L., Fang, X., Peng, C., Liu, S., Xiao, W., & Xiang, W. (2021). Ecosystem service multifunctionality of Chinese fir plantations differing in stand age and implications for sustainable management. Science of The Total Environment, 788, 147791. https://doi.org/10.1016/j.scitotenv.2021.147791
    Consulter sur linkinghub.elsevier.com
  • Zeng, Y., Gou, M., Ouyang, S., Chen, L., Fang, X., Zhao, L., Li, J., Peng, C., & Xiang, W. (2019). The impact of secondary forest restoration on multiple ecosystem services and their trade-offs. Ecological Indicators, 104, 248–258. https://doi.org/10.1016/j.ecolind.2019.05.008
    Consulter sur linkinghub.elsevier.com
  • Li, Q., Song, X., Chang, S. X., Peng, C., Xiao, W., Zhang, J., Xiang, W., Li, Y., & Wang, W. (2019). Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agricultural and Forest Meteorology, 268, 48–54. https://doi.org/10.1016/j.agrformet.2019.01.012
    Consulter sur linkinghub.elsevier.com
  • Sun, S., Ouyang, S., Hu, Y., Zhao, Z., Liu, M., Chen, L., Zeng, Y., Peng, C., Zhou, X., & Xiang, W. (2023). rTRIPLEXCWFlux: An R package for carbon–water coupling model to simulate net ecosystem productivity and evapotranspiration in forests. Environmental Modelling & Software, 162, 105661. https://doi.org/10.1016/j.envsoft.2023.105661
    Consulter sur linkinghub.elsevier.com
  • Liu, C., Xiang, W., Zou, L., Lei, P., Zeng, Y., Ouyang, S., Deng, X., Fang, X., Liu, Z., & Peng, C. (2019). Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil, 436(1–2), 347–364. https://doi.org/10.1007/s11104-019-03934-0
    Consulter sur link.springer.com
  • Ouyang, S., Gou, M., Lei, P., Liu, Y., Chen, L., Deng, X., Zhao, Z., Zeng, Y., Hu, Y., Peng, C., & Xiang, W. (2023). Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests. Forest Ecosystems, 10, 100093. https://doi.org/10.1016/j.fecs.2023.100093
    Consulter sur linkinghub.elsevier.com
  • Wu, H., Xiang, W., Ouyang, S., Xiao, W., Li, S., Chen, L., Lei, P., Deng, X., Zeng, Y., Zeng, L., & Peng, C. (2020). Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. Forest Ecology and Management, 460, 117896. https://doi.org/10.1016/j.foreco.2020.117896
    Consulter sur linkinghub.elsevier.com
  • Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Jiang, H., Xiang, W., Chang, J., Deng, X., & Yu, G. (2013). Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Global Change Biology, 19(1), 19–32. https://doi.org/10.1111/gcb.12034

    Abstract Sources of methane ( CH 4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH 4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH 4 emissions from rice paddies, natural wetlands, and lakes in C hina were first reviewed and then reestimated based on the review itself. Total emissions from the three CH 4 sources were 11.25 Tg CH 4  yr −1 (ranging from 7.98 to 15.16 Tg CH 4  yr −1 ). Among the emissions, 8.11 Tg CH 4  yr −1 (ranging from 5.20 to 11.36 Tg CH 4  yr −1 ) derived from rice paddies, 2.69 Tg CH 4  yr −1 (ranging from 2.46 to 3.20 Tg CH 4  yr −1 ) from natural wetlands, and 0.46 Tg CH 4  yr −1 (ranging from 0.33 to 0.59 Tg CH 4  yr −1 ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern C hina the greatest overall source of CH 4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH 4 emissions recorded within Q inghai‐ T ibetan P lateau peatlands. Total CH 4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH 4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH 4 emissions deriving from wetlands and lakes in C hina.

    Consulter sur onlinelibrary.wiley.com
  • Hu, Y., Xiang, W., Schäfer, K. V. R., Lei, P., Deng, X., Forrester, D. I., Fang, X., Zeng, Y., Ouyang, S., Chen, L., & Peng, C. (2022). Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of The Total Environment, 828, 154517. https://doi.org/10.1016/j.scitotenv.2022.154517
    Consulter sur linkinghub.elsevier.com
  • Jin, J., Xiang, W., Zeng, Y., Ouyang, S., Zhou, X., Hu, Y., Zhao, Z., Chen, L., Lei, P., Deng, X., Wang, H., Liu, S., & Peng, C. (2022). Stand carbon storage and net primary production in China’s subtropical secondary forests are predicted to increase by 2060. Carbon Balance and Management, 17(1), 6. https://doi.org/10.1186/s13021-022-00204-y

    Abstract Background Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and achieving China's target to become carbon (C) neutral by 2060. However, changes in C storage and net primary production (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [evergreen broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios (RCP4.5 and RCP8.5). Results The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF NPP declines slightly over the period from 2014 to 2060. Conclusions The obtained results lead to conclusion that proper management of China’s subtropical secondary forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.

    Consulter sur cbmjournal.biomedcentral.com
  • Ouyang, S., Xiang, W., Gou, M., Chen, L., Lei, P., Xiao, W., Deng, X., Zeng, L., Li, J., Zhang, T., Peng, C., & Forrester, D. I. (2021). Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio‐economic conditions. Global Ecology and Biogeography, 30(2), 500–513. https://doi.org/10.1111/geb.13235

    Abstract Aim Tree species diversity can increase the stability of ecosystem productivity by increasing mean productivity and/or reducing the standard deviation in productivity. However, stand structure, environmental and socio‐economic conditions influence plant diversity and might strongly influence the relationships between diversity and stability in natural forest communities. The relative importance of these factors for community stability remains poorly understood in complex (species‐rich) subtropical forests. Location Subtropical area of southern China. Time period 1999–2014. Major taxa studied Forest trees. Methods We conducted bivariate analyses to examine the mechanisms (overyielding and species asynchrony) underlying the effects of diversity on stability. Multiple regression models were then used to determine the relative importance of tree species diversity, stand structure, socio‐economic factors and environmental conditions on stability. Structural equation modelling was used to disentangle how these variables directly and/or indirectly affect forest stability. Results Tree species richness exerted a positive effect on stability through overyielding and species asynchrony, and this effect was stronger in mountainous forests than in hilly forests. Species richness positively affected the mean productivity, whereas species asynchrony negatively affected the variability in productivity, hence increasing forest stability. Structural diversity also had a positive effect, whereas population density had a negative effect on stability. Precipitation variability and slope mainly had indirect influences on stability through their effects on tree species richness. Main conclusions Overall, tree species diversity governed stability; however, stand structure, socio‐economic conditions and environmental conditions also played an important role in shaping stability in these forests. Our work highlights the importance of regulating stand structure and socio‐economic factors in forest management and biodiversity conservation, to maintain and enhance their stability to provide ecosystem services in the face of unprecedented anthropogenic activities and global climate change.

    Consulter sur onlinelibrary.wiley.com
  • Wu, H., Xiang, W., Ouyang, S., Forrester, D. I., Zhou, B., Chen, L., Ge, T., Lei, P., Chen, L., Zeng, Y., Song, X., Peñuelas, J., & Peng, C. (2019). Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Functional Ecology, 33(8), 1549–1560. https://doi.org/10.1111/1365-2435.13355

    Abstract Increased availability of soil phosphorus (P) has recently been recognised as an underlying driving factor for the positive relationship between plant diversity and ecosystem function. The effects of plant diversity on the bioavailable forms of P involved in biologically mediated rhizospheric processes and how the link between plant and soil microbial diversity facilitates soil P bioavailability, however, remain poorly understood. This study quantified four forms of bioavailable P (CaCl 2 ‐P, citric‐P, enzyme‐P and HCl‐P) in mature subtropical forests using a novel biologically based approach, which emulates how rhizospheric processes influence the release and supply of available P. Soil microbial diversity was measured by Illumina high‐throughput sequencing. Our results suggest that tree species richness significantly affects soil microbial diversity ( p  < 0.05), increases litter decomposition, fine‐root biomass and length and soil organic carbon and thus increases the four forms of bioavailable P. A structural equation model that links plants, soil microbes and P forms indicated that soil bacterial and fungal diversity play dominant roles in mediating the effects of tree species richness on soil P bioavailability. An increase in the biodiversity of plants, soil bacteria and fungi could maintain soil P bioavailability and alleviate soil P limitations. Our results imply that biodiversity strengthens plant and soil feedback and increases P recycling. A plain language summary is available for this article.

    Consulter sur besjournals.onlinelibrary.wiley.com
  • Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X., Forrester, D. I., Zeng, L., Lei, P., Lei, X., Gou, M., & Peng, C. (2019). Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 107(5), 2266–2277. https://doi.org/10.1111/1365-2745.13194

    Abstract Forest productivity may be determined not only by biodiversity but also by environmental factors and stand structure attributes. However, the relative importance of these factors in determining productivity is still controversial for subtropical forests. Based on a large dataset from 600 permanent forest inventory plots across subtropical China, we examined the relationship between biodiversity and forest productivity and tested whether stand structural attributes (stand density in terms of trees per ha, age and tree size) and environmental factors (climate and site conditions) had larger effects on productivity. Furthermore, we quantified the relative importance of environmental factors, stand structure and diversity in determining forest productivity. Diversity, together with stand structure and site conditions, regulated the variability in forest productivity. The relationship between diversity and forest productivity did not vary along environmental gradients. Stand density and age were more important modulators of forest productivity than diversity. Synthesis . Diversity had significant and positive effects on productivity in species‐rich subtropical forests, but the effects of stand density and age were also important. Our work highlights that while biodiversity conservation is often important, the regulation of stand structure can be even more important to maintain high productivity in subtropical forests.

    Consulter sur besjournals.onlinelibrary.wiley.com
  • Zhu, Q., Peng, C., Liu, J., Jiang, H., Fang, X., Chen, H., Niu, Z., Gong, P., Lin, G., Wang, M., Wang, H., Yang, Y., Chang, J., Ge, Y., Xiang, W., Deng, X., & He, J.-S. (2016). Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 6(1), 38020. https://doi.org/10.1038/srep38020

    Abstract Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH 4 ) emissions in China is important for improving our knowledge on CH 4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH 4 model to quantify the human and climate change induced contributions to natural wetland CH 4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH 4 emissions reduction (0.92 TgCH 4 ), and climate change contributed 20.4% to the CH 4 emissions increase (0.31 TgCH 4 ), suggesting that decreasing CH 4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH 4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH 4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH 4 emissions estimation.

    Consulter sur www.nature.com
  • Zhu, Q., Peng, C., Ciais, P., Jiang, H., Liu, J., Bousquet, P., Li, S., Chang, J., Fang, X., Zhou, X., Chen, H., Liu, S., Lin, G., Gong, P., Wang, M., Wang, H., Xiang, W., & Chen, J. (2017). Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation. Global Change Biology, 23(11), 4706–4716. https://doi.org/10.1111/gcb.13726

    Abstract Methane (CH 4 ) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH 4 emissions. Decreased wetland CH 4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH 4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH 4 emissions to investigate the impacts of the ENSO on CH 4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH 4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH 4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH 4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH 4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH 4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH 4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.

    Consulter sur onlinelibrary.wiley.com
  • Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J., Kang, X., Piao, S., Ouyang, H., Xiang, W., Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., … Wu, J. (2013). The impacts of climate change and human activities on biogeochemical cycles on the Q inghai‐ T ibetan P lateau. Global Change Biology, 19(10), 2940–2955. https://doi.org/10.1111/gcb.12277

    Abstract With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane ( CH 4 ) emissions from wetlands and increased CH 4 consumption of meadows, but might increase CH 4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide ( CO 2 ) and CH 4 . Nitrous oxide ( N 2 O ) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.

    Consulter sur onlinelibrary.wiley.com
  • 1
  • 2
  • Page 2 de 2
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (40)

Type de ressource

  • Article de colloque (1)
  • Article de revue (39)

Année de publication

  • Entre 2000 et 2025 (40)
    • Entre 2000 et 2009 (3)
      • 2009 (3)
    • Entre 2010 et 2019 (25)
      • 2010 (2)
      • 2011 (2)
      • 2012 (1)
      • 2013 (5)
      • 2014 (2)
      • 2015 (1)
      • 2016 (3)
      • 2017 (3)
      • 2019 (6)
    • Entre 2020 et 2025 (12)
      • 2020 (3)
      • 2021 (4)
      • 2022 (3)
      • 2023 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web