Votre recherche
Résultats 39 ressources
-
Plants interact to the seasonality of their environments, and changes in plant phenology have long been regarded as sensitive indicators of climatic change. Plant phenology modeling has been shown to be the simplest and most useful tool to assess phenol–climate shifts. Temperature, solar radiation, and water availability are assumed to be the key factors that control plant phenology. Statistical, mechanistic, and theoretical approaches have often been used for the parameterization of plant phenology models. The statistical approaches correlate the timing of phenological events to environmental factors or heat unit accumulations. The approaches have the simplified calculation procedures, correct phenological mechanism assumptions, but limited applications and predictive abilities. The mechanistic approaches describe plant phenology with the known or assumed “cause–effect relationships” between biological processes and key driving variables. The mechanistic approaches have the improved parameter processes, realistic assumptions, broad applications, and effective predictions. The theoretical approaches assume cost–benefit tradeoff strategies in trees. These methods are capable of capturing and quantifying the potential impacts and consequences of global climate change and human activity. However, certain limitations still exist related to our understanding of phenological mechanisms in relation to (1) interactions between plants and their specific climates, (2) the integration of both field observational and remote sensing data with plant phenology models across taxa and ecosystem type, (3) amplitude clarification of scale-related sensitivity to global climate change, and (4) improvements in parameterization processes and the overall reduction of modeling uncertainties to forecast impacts of future climate change on plant phenological dynamics. To improve our capacity in the prediction of the amplitude of plant phenological responses with regard to both structural and functional sensitivity to future global climate change, it is important to refine modeling methodologies by applying long-term and large-scale observational data. It is equally important to consider other less used but critical factors (such as heredity, pests, and anthropogenic drivers), apply advanced model parameterization and data assimilation techniques, incorporate process-based plant phenology models as a dynamic component into global vegetation dynamic models, and test plant phenology models against long-term ground observations and high-resolution satellite data across different spatial and temporal scales.
-
Abstract Sources of methane ( CH 4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH 4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH 4 emissions from rice paddies, natural wetlands, and lakes in C hina were first reviewed and then reestimated based on the review itself. Total emissions from the three CH 4 sources were 11.25 Tg CH 4 yr −1 (ranging from 7.98 to 15.16 Tg CH 4 yr −1 ). Among the emissions, 8.11 Tg CH 4 yr −1 (ranging from 5.20 to 11.36 Tg CH 4 yr −1 ) derived from rice paddies, 2.69 Tg CH 4 yr −1 (ranging from 2.46 to 3.20 Tg CH 4 yr −1 ) from natural wetlands, and 0.46 Tg CH 4 yr −1 (ranging from 0.33 to 0.59 Tg CH 4 yr −1 ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern C hina the greatest overall source of CH 4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH 4 emissions recorded within Q inghai‐ T ibetan P lateau peatlands. Total CH 4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH 4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH 4 emissions deriving from wetlands and lakes in C hina.
-
Abstract Background Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and achieving China's target to become carbon (C) neutral by 2060. However, changes in C storage and net primary production (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [evergreen broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios (RCP4.5 and RCP8.5). Results The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF NPP declines slightly over the period from 2014 to 2060. Conclusions The obtained results lead to conclusion that proper management of China’s subtropical secondary forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.
-
Abstract Aim Tree species diversity can increase the stability of ecosystem productivity by increasing mean productivity and/or reducing the standard deviation in productivity. However, stand structure, environmental and socio‐economic conditions influence plant diversity and might strongly influence the relationships between diversity and stability in natural forest communities. The relative importance of these factors for community stability remains poorly understood in complex (species‐rich) subtropical forests. Location Subtropical area of southern China. Time period 1999–2014. Major taxa studied Forest trees. Methods We conducted bivariate analyses to examine the mechanisms (overyielding and species asynchrony) underlying the effects of diversity on stability. Multiple regression models were then used to determine the relative importance of tree species diversity, stand structure, socio‐economic factors and environmental conditions on stability. Structural equation modelling was used to disentangle how these variables directly and/or indirectly affect forest stability. Results Tree species richness exerted a positive effect on stability through overyielding and species asynchrony, and this effect was stronger in mountainous forests than in hilly forests. Species richness positively affected the mean productivity, whereas species asynchrony negatively affected the variability in productivity, hence increasing forest stability. Structural diversity also had a positive effect, whereas population density had a negative effect on stability. Precipitation variability and slope mainly had indirect influences on stability through their effects on tree species richness. Main conclusions Overall, tree species diversity governed stability; however, stand structure, socio‐economic conditions and environmental conditions also played an important role in shaping stability in these forests. Our work highlights the importance of regulating stand structure and socio‐economic factors in forest management and biodiversity conservation, to maintain and enhance their stability to provide ecosystem services in the face of unprecedented anthropogenic activities and global climate change.
-
Abstract Increased availability of soil phosphorus (P) has recently been recognised as an underlying driving factor for the positive relationship between plant diversity and ecosystem function. The effects of plant diversity on the bioavailable forms of P involved in biologically mediated rhizospheric processes and how the link between plant and soil microbial diversity facilitates soil P bioavailability, however, remain poorly understood. This study quantified four forms of bioavailable P (CaCl 2 ‐P, citric‐P, enzyme‐P and HCl‐P) in mature subtropical forests using a novel biologically based approach, which emulates how rhizospheric processes influence the release and supply of available P. Soil microbial diversity was measured by Illumina high‐throughput sequencing. Our results suggest that tree species richness significantly affects soil microbial diversity ( p < 0.05), increases litter decomposition, fine‐root biomass and length and soil organic carbon and thus increases the four forms of bioavailable P. A structural equation model that links plants, soil microbes and P forms indicated that soil bacterial and fungal diversity play dominant roles in mediating the effects of tree species richness on soil P bioavailability. An increase in the biodiversity of plants, soil bacteria and fungi could maintain soil P bioavailability and alleviate soil P limitations. Our results imply that biodiversity strengthens plant and soil feedback and increases P recycling. A plain language summary is available for this article.
-
Abstract Forest productivity may be determined not only by biodiversity but also by environmental factors and stand structure attributes. However, the relative importance of these factors in determining productivity is still controversial for subtropical forests. Based on a large dataset from 600 permanent forest inventory plots across subtropical China, we examined the relationship between biodiversity and forest productivity and tested whether stand structural attributes (stand density in terms of trees per ha, age and tree size) and environmental factors (climate and site conditions) had larger effects on productivity. Furthermore, we quantified the relative importance of environmental factors, stand structure and diversity in determining forest productivity. Diversity, together with stand structure and site conditions, regulated the variability in forest productivity. The relationship between diversity and forest productivity did not vary along environmental gradients. Stand density and age were more important modulators of forest productivity than diversity. Synthesis . Diversity had significant and positive effects on productivity in species‐rich subtropical forests, but the effects of stand density and age were also important. Our work highlights that while biodiversity conservation is often important, the regulation of stand structure can be even more important to maintain high productivity in subtropical forests.
-
Abstract Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH 4 ) emissions in China is important for improving our knowledge on CH 4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH 4 model to quantify the human and climate change induced contributions to natural wetland CH 4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH 4 emissions reduction (0.92 TgCH 4 ), and climate change contributed 20.4% to the CH 4 emissions increase (0.31 TgCH 4 ), suggesting that decreasing CH 4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH 4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH 4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH 4 emissions estimation.
-
Abstract Methane (CH 4 ) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH 4 emissions. Decreased wetland CH 4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH 4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH 4 emissions to investigate the impacts of the ENSO on CH 4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH 4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH 4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH 4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH 4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH 4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH 4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.
-
Abstract With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane ( CH 4 ) emissions from wetlands and increased CH 4 consumption of meadows, but might increase CH 4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide ( CO 2 ) and CH 4 . Nitrous oxide ( N 2 O ) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.
- 1
- 2