Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Wang, Weifeng"

Résultats 28 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • Page 1 de 2
Résumés
  • Lei, X., Wang, W., & Peng, C. (2009). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39(10), 1835–1847. https://doi.org/10.1139/X09-089

    Relationships between stand growth and structural diversity were examined in spruce-dominated forests in New Brunswick, Canada. Net growth, survivor growth, mortality, and recruitment represented stand growth, and tree species, size, and height diversity indices were used to describe structural diversity. Mixed-effects second-order polynomial regressions were employed for statistical analysis. Results showed stand structural diversity had a significant positive effect on net growth and survivor growth by volume but not on mortality and recruitment. Among the tested diversity indices, the integrated diversity of tree species and height contributed most to stand net growth and survivor growth. Structural diversity showed increasing trends throughout the developmental stages from young, immature, mature, and overmature forest stands. This relationship between stand growth and structural diversity may be due to stands featuring high structural diversity that enhances niche complementarities of resource use because trees exist within different horizontal and vertical layers, and strong competition resulted from size differences among trees. It is recommended to include effects of species and structural diversity in forest growth modeling initiatives. Moreover, uneven-aged stand management in conjunction with selective or partial cutting to maintain high structural diversity is also recommended to maintain biodiversity and rapid growth in spruce-dominated forests.

    Consulter sur www.nrcresearchpress.com
  • Song, X., Peng, C., Zhou, G., Jiang, H., & Wang, W. (2014). Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis. Scientific Reports, 4(1), 4460. https://doi.org/10.1038/srep04460
    Consulter sur www.nature.com
  • Wang, W., Lei, X., Ma, Z., Kneeshaw, D. D., & Peng, C. (2011). Positive Relationship between Aboveground Carbon Stocks and Structural Diversity in Spruce-Dominated Forest Stands in New Brunswick, Canada. Forest Science, 57(6), 506–515. https://doi.org/10.1093/forestscience/57.6.506

    Abstract Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and height diversity indices as well as a combination of these diversity indices were used to correlate aboveground C stocks. Multiple linear regressions were subsequently used to quantify the relationships between these indices and aboveground C stocks, and partial correlation analysis was also adopted to remove the effects of other explanatory variables. Results show that stand structural diversity has a significant positive effect on aboveground C stocks even though the relationship is weak overall. Positive relationships observed between the diversity indices and aboveground C stocks support the hypothesis that increased structural diversity enhances aboveground C storage capacity. This occurs because complex forest structures allow for greater light infiltration and promote a more efficient resource use by trees, leading to an increase in biomass and C production. Mixed tolerant species composition and uneven-aged stand management in conjunction with selection or partial cutting to maintain high structural diversity is therefore recommended to preserve biodiversity and C stocks in spruce-dominated forests.

    Consulter sur academic.oup.com
  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., & Luo, Z. (2012). Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 20(2), 109–121. https://doi.org/10.1139/a2012-004

    Drought-induced tree mortality, which rapidly alters forest ecosystem composition, structure, and function, as well as the feedbacks between the biosphere and climate, has occurred worldwide over the past few decades, and is expected to increase pervasively as climate change progresses. The objectives of this review are to (1) highlight the likely ecological consequences of drought-induced tree mortality, (2) synthesize the hypotheses related to drought-induced tree mortality, (3) discuss the implications of current knowledge for modeling tree mortality processes under climate change, and (4) highlight future research needs. First, we emphasize the likely ecological consequences of tree mortality from ecosystem to biome to continental scales. We then document and criticize multiple non-exclusive tree mortality hypotheses (e.g., carbon starvation — carbon supply is less than carbon demand; and hydraulic failure — desiccation from failed water transport) from a more comprehensive ecological perspective. Next, we extend a forest decline concept model, Manion’s framework, by considering new emerging environmental conditions, for a more thorough understanding of the effects of climate change on forest decline. We find that an increase in drought frequency and (or) climate-change-type droughts may trigger increased background tree mortality rates and severe forest dieback events, accelerating species turnover and ecological regime shifts. The contribution of CO 2 fertilization, rising temperature within the optimal growth range, and increased nitrogen deposition may defer or reduce this trend in tree mortality, but such contributions will vary between locations, species, and tree sizes. Multiple hypotheses proposed for drought-induced tree mortality are discussed, but coupling carbon and water cycles could help resolve the debate. The absence of a physiological understanding of tree mortality mechanisms limits the predictive ability of current models from stand-level process-based models to dynamic global vegetation models. We thus suggest that long-term observations, experiments, and models should be tightly interwoven during the research process to better forecast future climate changes and evaluate their impacts on forests.

    Consulter sur www.nrcresearchpress.com
  • Ma, X., Feng, H., Guo, J., Peng, C., Kneeshaw, D., & Wang, W. (2024). Soil methane emissions from plain poplar (Populus spp.) plantations with contrasting soil textures. Scientific Reports, 14(1), 14466. https://doi.org/10.1038/s41598-024-65300-0

    Abstract The forest soil methane (CH 4 ) flux exhibits high spatiotemporal variability. Understanding these variations and their driving factors is crucial for accurately assessing the forest CH 4 budget. In this study, we monitored the diurnal and seasonal variations in soil CH 4 fluxes in two poplar ( Populus spp.) plantations (Sihong and Dongtai) with different soil textures using the static chamber-based method. The results showed that the annual average soil CH 4 flux in the Sihong and Dongtai poplar plantations was 4.27 ± 1.37 kg CH 4 -C ha –1  yr –1 and 1.92 ± 1.07 kg CH 4 -C ha –1  yr –1 , respectively. Both plantations exhibited net CH 4 emissions during the growing season, with only weak CH 4 absorption (–0.01 to –0.007 mg m –2  h –1 ) during the non-growing season. Notably, there was a significant difference in soil CH 4 flux between the clay loam of the Sihong poplar plantation and the sandy loam of the Dongtai poplar plantation. From August to December 2019 and from July to August and November 2020, the soil CH 4 flux in the Sihong poplar plantation was significantly higher than in the Dongtai poplar plantation. Moreover, the soil CH 4 flux significantly increased with rising soil temperature and soil water content. Diurnally, the soil CH 4 flux followed a unimodal variation pattern at different growing stages of poplars, with peaks occurring at noon and in the afternoon. However, the soil CH 4 flux did not exhibit a consistent seasonal pattern across different years, likely due to substantial variations in precipitation and soil water content. Overall, our study emphasizes the need for a comprehensive understanding of the spatiotemporal variations in forest soil CH 4 flux with different soil textures. This understanding is vital for developing reasonable forest management strategies and reducing uncertainties in the global CH 4 budget.

    Consulter sur www.nature.com
  • Song, X., Peng, C., Jiang, H., Zhu, Q., & Wang, W. (2013). Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis. PLoS ONE, 8(6), e68858. https://doi.org/10.1371/journal.pone.0068858
    Consulter sur dx.plos.org
  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., Song, X., & Zhou, X. (2012). Quantifying the effects of climate change and harvesting on carbon dynamics of boreal aspen and jack pine forests using the TRIPLEX-Management model. Forest Ecology and Management, 281, 152–162. https://doi.org/10.1016/j.foreco.2012.06.028
    Consulter sur linkinghub.elsevier.com
  • Lei, Z., Li, Q., Song, X., Wang, W., Zhang, Z., Peng, C., & Tian, L. (2018). Biochar mitigates dissolved organic carbon loss but does not affect dissolved organic nitrogen leaching loss caused by nitrogen deposition in Moso bamboo plantations. Global Ecology and Conservation, 16, e00494. https://doi.org/10.1016/j.gecco.2018.e00494
    Consulter sur linkinghub.elsevier.com
  • Ma, Z., Peng, C., Li, W., Zhu, Q., Wang, W., Song, X., & Liu, J. (2013). MODELING INDIVIDUAL TREE MORTALITY RATES USING MARGINAL AND RANDOM EFFECTS REGRESSION MODELS. Natural Resource Modeling, 26(2), 131–153. https://doi.org/10.1111/j.1939-7445.2012.00124.x

    A bstract Developing models to predict tree mortality using data from long‐term repeated measurement data sets can be difficult and challenging due to the nature of mortality as well as the effects of dependence on observations. Marginal (population‐averaged) generalized estimating equations (GEE) and random effects (subject‐specific) models offer two possible ways to overcome these effects. For this study, standard logistic, marginal logistic based on the GEE approach, and random logistic regression models were fitted and compared. In addition, four model evaluation statistics were calculated by means of K ‐fold cross‐valuation. They include the mean prediction error, the mean absolute prediction error, the variance of prediction error, and the mean square error. Results from this study suggest that the random effects model produced the smallest evaluation statistics among the three models. Although marginal logistic regression accommodated for correlations between observations, it did not provide noticeable improvements of model performance compared to the standard logistic regression model that assumed impendence. This study indicates that the random effects model was able to increase the overall accuracy of mortality modeling. Moreover, it was able to ascertain correlation derived from the hierarchal data structure as well as serial correlation generated through repeated measurements.

    Consulter sur onlinelibrary.wiley.com
  • Wang, W., Peng, C., Zhang, S. Y., Zhou, X., Larocque, G. R., Kneeshaw, D. D., & Lei, X. (2011). Development of TRIPLEX-Management model for simulating the response of forest growth to pre-commercial thinning. Ecological Modelling, 222(14), 2249–2261. https://doi.org/10.1016/j.ecolmodel.2010.09.019
    Consulter sur linkinghub.elsevier.com
  • Zhou, X., Lei, X., Peng, C., Wang, W., Zhou, C., Liu, C., & Liu, Z. (2016). Correcting the overestimate of forest biomass carbon on the national scale. Methods in Ecology and Evolution, 7(4), 447–455. https://doi.org/10.1111/2041-210X.12505

    Summary For decades, researchers have thought it was difficult to remove the uncertainty from the estimates of forest carbon storage and its changes on national sales. This is not only because of stochasticity in the data but also the bias to overcome in the computations. Most studies of the estimation, however, ignore quantitative analyses for the latter uncertainty. This bias primarily results from the widely used volume‐biomass method via scaling up forest biomass from limited sample plots to large areas. This paper addresses (i) the mechanism of scaling‐up error occurrence, and (ii) the quantitative effects of the statistical factors on the error. The error compensators were derived, and expressed by ternary functions with three variables: expectation, variance and the power in the volume‐biomass equation. This is based on analysing the effect of power‐law function convexity on scaling‐up error by solving the difference of both sides of the weighted Jensen inequality. The simulated data and the national forest inventory of China were used for algorithm testing and application, respectively. Scaling‐up error occurrence stems primarily from an effect of the distribution heterogeneity of volume density on the total biomass amount, and secondarily from the extent of function nonlinearities. In our experiments, on average 94·2% of scaling‐up error can be reduced for the statistical populations of forest stands in a region. China's forest biomass carbon was estimated as approximately 6·0 PgC or less at the beginning of the 2010s after on average 1·1% error compensation. The results of both the simulated data experiment and national‐scale estimation suggest that the biomass is overestimated for young forests more than others. It implies a necessity to compensate scaling‐up error, especially for the areas going through extensive afforestation and reforestation in past decades. This study highlights the importance of understanding how both the function nonlinearity and the statistics of the variables quantitatively affect the scaling‐up error. Generally, the presented methods will help to translate fine‐scale ecological relationships to estimate coarser scale ecosystem properties by correcting aggregation errors.

    Consulter sur besjournals.onlinelibrary.wiley.com
  • Zhou, X., Lei, X., Peng, C., Wang, W., Zhou, C., Liu, C., & Liu, Z. (2016). Correcting the overestimate of forest biomass carbon on the national scale. Methods in Ecology and Evolution, 7(4), 447–455. https://doi.org/10.1111/2041-210X.12505

    Summary For decades, researchers have thought it was difficult to remove the uncertainty from the estimates of forest carbon storage and its changes on national sales. This is not only because of stochasticity in the data but also the bias to overcome in the computations. Most studies of the estimation, however, ignore quantitative analyses for the latter uncertainty. This bias primarily results from the widely used volume‐biomass method via scaling up forest biomass from limited sample plots to large areas. This paper addresses (i) the mechanism of scaling‐up error occurrence, and (ii) the quantitative effects of the statistical factors on the error. The error compensators were derived, and expressed by ternary functions with three variables: expectation, variance and the power in the volume‐biomass equation. This is based on analysing the effect of power‐law function convexity on scaling‐up error by solving the difference of both sides of the weighted Jensen inequality. The simulated data and the national forest inventory of China were used for algorithm testing and application, respectively. Scaling‐up error occurrence stems primarily from an effect of the distribution heterogeneity of volume density on the total biomass amount, and secondarily from the extent of function nonlinearities. In our experiments, on average 94·2% of scaling‐up error can be reduced for the statistical populations of forest stands in a region. China's forest biomass carbon was estimated as approximately 6·0 PgC or less at the beginning of the 2010s after on average 1·1% error compensation. The results of both the simulated data experiment and national‐scale estimation suggest that the biomass is overestimated for young forests more than others. It implies a necessity to compensate scaling‐up error, especially for the areas going through extensive afforestation and reforestation in past decades. This study highlights the importance of understanding how both the function nonlinearity and the statistics of the variables quantitatively affect the scaling‐up error. Generally, the presented methods will help to translate fine‐scale ecological relationships to estimate coarser scale ecosystem properties by correcting aggregation errors.

    Consulter sur besjournals.onlinelibrary.wiley.com
  • Fang, X., Zhu, Q., Chen, H., Ma, Z., Wang, W., Song, X., Zhao, P., & Peng, C. (2014). Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009. Journal of Applied Remote Sensing, 8(1), 083666. https://doi.org/10.1117/1.JRS.8.083666
    Consulter sur remotesensing.spiedigitallibrary.org
  • Song, X., Peng, C., Zhao, Z., Zhang, Z., Guo, B., Wang, W., Jiang, H., & Zhu, Q. (2014). Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment, 94, 546–551. https://doi.org/10.1016/j.atmosenv.2014.05.071
    Consulter sur linkinghub.elsevier.com
  • Feng, H., Guo, J., Han, M., Wang, W., Peng, C., Jin, J., Song, X., & Yu, S. (2020). A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems. Forest Ecology and Management, 455, 117702. https://doi.org/10.1016/j.foreco.2019.117702
    Consulter sur linkinghub.elsevier.com
  • Ma, Z., Peng, C., Zhu, Q., Chen, H., Yu, G., Li, W., Zhou, X., Wang, W., & Zhang, W. (2012). Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proceedings of the National Academy of Sciences, 109(7), 2423–2427. https://doi.org/10.1073/pnas.1111576109

    The boreal forests, identified as a critical “tipping element” of the Earth's climate system, play a critical role in the global carbon budget. Recent findings have suggested that terrestrial carbon sinks in northern high-latitude regions are weakening, but there has been little observational evidence to support the idea of a reduction of carbon sinks in northern terrestrial ecosystems. Here, we estimated changes in the biomass carbon sink of natural stands throughout Canada's boreal forests using data from long-term forest permanent sampling plots. We found that in recent decades, the rate of biomass change decreased significantly in western Canada (Alberta, Saskatchewan, and Manitoba), but there was no significant trend for eastern Canada (Ontario and Quebec). Our results revealed that recent climate change, and especially drought-induced water stress, is the dominant cause of the observed reduction in the biomass carbon sink, suggesting that western Canada's boreal forests may become net carbon sources if the climate change–induced droughts continue to intensify.

    Consulter sur pnas.org
  • Song, X., Zhou, G., Jiang, H., Yu, S., Fu, J., Li, W., Wang, W., Ma, Z., & Peng, C. (2011). Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environmental Reviews, 19(NA), 418–428. https://doi.org/10.1139/a11-015
    Consulter sur www.nrcresearchpress.com
  • Jiao, W., Wang, W., Peng, C., Lei, X., Ruan, H., Li, H., Yang, Y., Grabarnik, P., & Shanin, V. (2022). Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density. Forests, 13(8), 1212. https://doi.org/10.3390/f13081212

    Carbon allocation is an important mechanism through which plants respond to environmental changes. To enhance our understanding of maximizing carbon uptake by controlling planting densities, the carbon allocation module of a process-based model, TRIPLEX-Management, was modified and improved by introducing light, soil water, and soil nitrogen availability factors to quantify the allocation coefficients for different plant organs. The modified TRIPLEX-Management model simulation results were verified against observations from northern Jiangsu Province, China, and then the model was used to simulate dynamic changes in forest carbon under six density scenarios (200, 400, 600, 800, 1000, and 1200 stems ha−1). The mean absolute errors between the predicted and observed variables of the mean diameter at breast height, mean height, and estimated aboveground biomass ranged from 15.0% to 26.6%, and were lower compared with the original model simulated results, which ranged from 24.4% to 60.5%. The normalized root mean square errors ranged from 0.2 to 0.3, and were lower compared with the original model simulated results, which ranged from 0.3 to 0.6. The Willmott index between the predicted and observed variables also varied from 0.5 to 0.8, indicating that the modified TRIPLEX-Management model could accurately simulate the dynamic changes in poplar (Populus spp.) plantations with different densities in northern Jiangsu Province. The density scenario results showed that the leaf and fine root allocation coefficients decreased with the increase in stand density, while the stem allocation increased. Overall, our study showed that the optimum stand density (approximately 400 stems ha−1) could reach the highest aboveground biomass for poplar stands and soil organic carbon storage, leading to higher ecological functions related to carbon sequestration without sacrificing wood production in an economical way in northern Jiangsu Province. Therefore, reasonable density control with different soil and climate conditions should be recommended to maximize carbon sequestration.

    Consulter sur www.mdpi.com
  • Feng, H., Guo, J., Peng, C., Kneeshaw, D., Roberge, G., Pan, C., Ma, X., Zhou, D., & Wang, W. (2023). Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta‐analysis. Global Change Biology, 29(14), 3970–3989. https://doi.org/10.1111/gcb.16731

    Abstract A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta‐analysis reveals that N addition (ranging from 1.08 to 113.81 g m −2  year −1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root‐shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta‐regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta‐analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade‐offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.

    Consulter sur onlinelibrary.wiley.com
  • Chen, J., Yang, H., Man, R., Wang, W., Sharma, M., Peng, C., Parton, J., Zhu, H., & Deng, Z. (2020). Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests. Forest Ecology and Management, 466, 118104. https://doi.org/10.1016/j.foreco.2020.118104
    Consulter sur linkinghub.elsevier.com
  • 1
  • 2
  • Page 1 de 2
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (26)

Type de ressource

  • Article de revue (28)

Année de publication

  • Entre 2000 et 2025 (28)
    • Entre 2000 et 2009 (1)
      • 2009 (1)
    • Entre 2010 et 2019 (18)
      • 2011 (6)
      • 2012 (3)
      • 2013 (2)
      • 2014 (3)
      • 2016 (2)
      • 2018 (1)
      • 2019 (1)
    • Entre 2020 et 2025 (9)
      • 2020 (2)
      • 2022 (2)
      • 2023 (3)
      • 2024 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web