Votre recherche
Résultats 4 ressources
-
Abstract Process‐based land surface models are important tools for estimating global wetland methane (CH 4 ) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site‐level patterns of freshwater wetland CH 4 fluxes (FCH 4 ) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model‐observation disagreements are mainly at multi‐day time scales (<15 days); (b) most of the models can capture the CH 4 variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH 4 production). Our evaluation suggests the need to accurately replicate FCH 4 variability, especially at short time scales, in future wetland CH 4 model developments. , Plain Language Summary Land surface models are useful tools to estimate and predict wetland methane (CH 4 ) flux but there is no evaluation of modeled CH 4 flux error at different time scales. Here we use a statistical approach and observations from eddy covariance sites to evaluate the performance of seven wetland models for different wetland types. The results suggest models have captured CH 4 flux variability at monthly or seasonal time scales for boreal and Arctic tundra wetlands but failed to capture the observed seasonal variability for temperate and tropical/subtropical wetlands. The analysis suggests that improving modeled flux at short time scale is important for future model development. , Key Points Significant model‐observation disagreements were found at multi‐day and weekly time scales (<15 days) Models captured variability at monthly and seasonal time (42–142 days) scales for boreal and Arctic tundra sites but not for temperate and tropical sites The model errors show that biases at multi‐day time scales may contribute to persistent systematic biases on longer time scales
-
Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0°C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low‐temperature response to shut down GPP for temperatures below 0°C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf‐to‐canopy scaling and better values of model parameters that control the maximum potential GPP, such as ε max (LUE), V cmax (unstressed Rubisco catalytic capacity) or J max (the maximum electron transport rate). , Key Points Gross primary productivity (GPP) from 26 models tested at 39 flux tower sites Simulated light use efficiency controls model performance Models overpredict GPP under dry conditions
-
Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0°C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low‐temperature response to shut down GPP for temperatures below 0°C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf‐to‐canopy scaling and better values of model parameters that control the maximum potential GPP, such as ε max (LUE), V cmax (unstressed Rubisco catalytic capacity) or J max (the maximum electron transport rate). , Key Points Gross primary productivity (GPP) from 26 models tested at 39 flux tower sites Simulated light use efficiency controls model performance Models overpredict GPP under dry conditions