Votre recherche
Résultats 8 ressources
-
Abstract Winter precipitation is the source of many inconveniences in many regions of North America, for both infrastructure and the economy. The ice storm that hit the Canadian Maritime Provinces on 24–26 January 2017 remains one of the most expensive in history for the province of New Brunswick. Up to 50 mm of freezing rain caused power outages across the province, depriving up to one-third of New Brunswick residences of electricity, with some outages lasting 2 weeks. This study aims to use high-resolution atmospheric modeling to investigate the meteorological conditions during this severe storm and their contribution to major power outages. The persistence of a deep warm layer aloft, coupled with the slow movement of the associated low pressure system, contributed to widespread ice accumulation. When combined with the strong winds observed, extensive damage to electricity networks was inevitable. A 2-m temperature cold bias was identified between the simulation and the observations, in particular during periods of freezing rain. In the northern part of New Brunswick, cold-air advection helped keep temperatures below 0°C, while in southern regions, the 2-m temperature increased rapidly to slightly above 0°C because of radiational heating. The knowledge gained in this study on the processes associated with either maintaining or stopping freezing rain will enhance the ability to forecast and, in turn, to mitigate the hazards associated with those extreme events. Significance Statement A slow-moving low pressure system produced up to 50 mm of freezing rain for 31 h along the east coast of New Brunswick, Canada, on 24–26 January 2017, causing unprecedented power outages. Warm-air advection aloft, along with a combination of higher wind speeds and large amounts of ice accumulation, created ideal conditions for severe freezing rain. The storm began with freezing rain along the entire north–south cross section of eastern New Brunswick and changed to rain only in the south, when local temperatures increased to >0°C. Near-surface cold-air advection kept temperatures below 0°C in the north. Warming from the latent heat produced by freezing contributed to persistent near-0°C conditions during freezing rain.
-
Abstract This study aims to characterize the shapes and fall speeds of ice pellets formed in various atmospheric conditions and to investigate the possibility to use a laser-optical disdrometer to distinguish between ice pellets and other types of precipitation. To do so, four ice pellet events were documented using manual observations, macrophotography, and laser-optical disdrometer data. First, various ice pellet fall speeds and shapes, including spherical, bulged, fractured, and irregular particles, were associated with distinct atmospheric conditions. A higher fraction of bulged and fractured ice pellets was observed when solid precipitation was completely melted aloft while more irregular particles were observed during partial melting. These characteristics affected the diameter–fall speed relations measured. Second, the measurements of particles’ fall speed and diameter show that ice pellets could be differentiated from rain or freezing rain. Ice pellets larger than 1.5 mm tend to fall > 0.5 m s −1 slower than raindrops of the same size. In addition, the fall speed of a small fraction of ice pellets was < 2 m s −1 regardless of their size, as compared with a fall speed > 3 m s −1 for ice pellets with diameter > 1.5 mm. Video analysis suggests that these slower particles could be ice pellets passing through the laser-optical disdrometer after colliding with the head of the instrument. Overall, these findings contribute to a better understanding of the microphysics of ice pellets and their measurement using a laser-optical disdrometer. Significance Statement Ice pellets are challenging to forecast and to detect automatically. In this study, we documented the fall speed and physical characteristics of ice pellets during various atmospheric conditions using a combination of a laser-optical disdrometer, manual observations, and macrophotography images. Relationships were found between the shape and fall speed of ice pellets. These findings could be used to refine the parameterization of ice pellets in atmospheric models and, consequently, improve the forecast of impactful winter precipitation types such as freezing rain. Furthermore, they will also help to physically interpret laser-optical disdrometer data during ice pellets and freezing rain.
-
This dataset contains the observation data used to prepare the thesis of Mathieu Lachapelle. It contains radar data, laser-optical disdrometer data, standard meteorological data, manual observations, and macrophotography recorded during four ice pellet events that occurred in 2019 and 2020. The ice pellet episodes occurred in the Montreal region and most observational data were collected at UQAM-PK weather station, on the rooftop of President Kennedy building, in Downtown Montreal. More documentation is available in the READMEs provided with the dataset. Cette base de données contient les données d'observation utilisées pour rédiger la thèse de Mathieu Lachapelle. Elle inclut des données radar, des données d'un disdromètre optique, des mesures météorologiques de base, des observations manuelles et des macro photographies collectées pendant quatre épisodes de grésil qui se sont produit en 2019 et en 2020. Les épisodes de grésil ont eu lieu dans la région de Montréal et la plupart des données d'observation ont été collectées à la station météo UQAM-PK, installée sur le toit du bâtiment Président-Kennedy au centre-ville de Montréal. Davantage de documentation est accessible via les fichiers READMEs inclus dans la base de données.
-
Abstract. The amount and the phase of cold-season precipitation accumulating in the upper Saint John River (SJR) basin are critical factors in determining spring runoff, ice jams, and flooding. To study the impact of winter and spring storms on the snowpack in the upper SJR basin, the Saint John River Experiment on Cold Season Storms (SAJESS) was conducted during winter–spring 2020–2021. Here, we provide an overview of the SAJESS study area, field campaign, and data collected. The upper SJR basin represents 41 % of the entire SJR watershed and encompasses parts of the US state of Maine and the Canadian provinces of Quebec and New Brunswick. In early December 2020, meteorological instruments were co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick. This included a separate weather station for measuring standard meteorological variables, an optical disdrometer, and a micro rain radar. This instrumentation was augmented during an intensive observation period that also included upper-air soundings, surface weather observations, a multi-angle snowflake camera, and macrophotography of solid hydrometeors throughout March and April 2021. During the study, the region experienced a lower-than-average snowpack that peaked at ∼ 65 cm, with a total of 287 mm of precipitation (liquid-equivalent) falling between December 2020 and April 2021, a 21 % lower amount of precipitation than the climatological normal. Observers were present for 13 storms during which they conducted 183 h of precipitation observations and took more than 4000 images of hydrometeors. The inclusion of local volunteers and schools provided an additional 1700 measurements of precipitation amounts across the area. The resulting datasets are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2023). We also include a synopsis of the data management plan and a brief assessment of the rewards and challenges of conducting the field campaign and utilizing community volunteers for citizen science.
-
Meteorological data, manual observations, and photographic images of hydrometeors recorded during the Saint John River Experiment on Cold Season Storms. The dataset covers the period December 2020 to April 2021, with an intensive observation period from March 2021 to April 2021.
-
Abstract The Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields.
-
Abstract. The continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076 m a.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580 m a.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087 m a.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event.