Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Thériault, Julie M."
Année de publication
  • Entre 2000 et 2025
    • Entre 2020 et 2025

Résultats 34 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • Page 1 de 2
Résumés
  • Lachapelle, M., & Thériault, J. M. (2022). Characteristics of Precipitation Particles and Microphysical Processes during the 11–12 January 2020 Ice Pellet Storm in the Montréal Area, Québec, Canada. Monthly Weather Review, 150(5), 1043–1059. https://doi.org/10.1175/MWR-D-21-0185.1

    Abstract Freezing rain and ice pellets are particularly difficult to forecast when solid precipitation is completely melted aloft. This study addresses this issue by investigating the processes that led to a long-duration ice pellet event in Montreal, Québec, Canada, on 11–12 January 2020. To do so, a benchmark model initialized with ERA5 data is used to show that solid precipitation was completely melted below the melting layer, which discards partial melting from the possible ice pellet formation processes. Macro photography of precipitation reveals that small columnar crystals (∼200 μ m) and ice pellets occurred simultaneously for more than 10 h. The estimation of ice crystal number concentration using macro photographs and laser-optical disdrometer data suggests that all supercooled drops could have refrozen by contact freezing with ice crystals. Rimed ice pellets also indicate ice supersaturation in the subfreezing layer. Given these observations, the formation of ice pellets and ice crystals was probably promoted by secondary ice production and the horizontal advection of ice crystals below the melting layer, as we illustrate using a conceptual model. Overall, these findings demonstrate how ice nucleation processes at temperatures near 0°C can drastically change the precipitation phase and the impact of a storm. Significance Statement Ice pellets are generally formed when snow particles partially melt while falling through a warm layer aloft before completely refreezing in a cold layer closer to the surface. Ice pellets can also be formed when snow particles completely melt aloft, but freezing rain is often produced in such conditions. On 11–12 January 2020, ice pellets were produced during more than 10 h in Montreal, Quebec, Canada. Macro photographs of the precipitation particles show that ice pellets occurred simultaneously with small ice crystals. Most of the ice pellets were produced while snow particles were completely melted aloft. The supercooled drops probably refroze due to collisions with the ice crystals that could have been advected by the northeasterly winds near the surface.

    Consulter sur journals.ametsoc.org
  • Thériault, J. M., Leroux, N. R., & Rasmussen, R. M. (2021). Improvement of Solid Precipitation Measurements Using a Hotplate Precipitation Gauge. Journal of Hydrometeorology, 22(4), 877–885. https://doi.org/10.1175/JHM-D-20-0168.1

    Abstract Accurate snowfall measurement is challenging because it depends on the precipitation gauge used, meteorological conditions, and the precipitation microphysics. Upstream of weighing gauges, the flow field is disturbed by the gauge and any shielding used usually creates an updraft, which deflects solid precipitation from falling in the gauge, resulting in significant undercatch. Wind shields are often used with weighing gauges to reduce this updraft, and transfer functions are required to adjust the snowfall measurements to consider gauge undercatch. Using these functions reduces the bias in precipitation measurement but not the root-mean-square error (RMSE). In this study, the accuracy of the Hotplate precipitation gauge was compared to standard unshielded and shielded weighing gauges collected during the WMO Solid Precipitation Intercomparison Experiment program. The analysis performed in this study shows that the Hotplate precipitation gauge bias after wind correction is near zero and similar to wind corrected weighing gauges. The RMSE of the Hotplate precipitation gauge measurements is lower than weighing gauges (with or without an Alter shield) for wind speeds up to 5 m s −1 , the wind speed limit at which sufficient data were available. This study shows that the Hotplate precipitation gauge measurement has a low bias and RMSE due to its aerodynamic shape, making its performance mostly independent of the type of solid precipitation.

    Consulter sur journals.ametsoc.org
  • Lachapelle, M., Cholette, M., & Thériault, J. M. (2024). Effect of Secondary Ice Production Processes on the Simulation of ice pellets using the Predicted Particle Properties microphysics scheme. Clouds and Precipitation/Atmospheric Modelling and Data Analysis/Troposphere/Physics (physical properties and processes). https://doi.org/10.5194/egusphere-2024-594

    Abstract. Ice pellets can form when supercooled raindrops collide with small ice particles that can be generated through secondary ice production processes. The use of atmospheric models that neglect these collisions can lead to an overestimation of freezing rain. The objective of this study is therefore to understand the impacts of collisional freezing and secondary ice production on simulations of ice pellets and freezing rain. We studied the properties of precipitation simulated with the microphysical scheme Predicted Particle Properties (P3) for two distinct secondary ice production processes. Possible improvements to the representation of ice pellets and ice crystals in P3 were analyzed by simulating an ice pellet storm that occurred over eastern Canada in January 2020. Those simulations showed that adding secondary ice production processes increased the accumulation of ice pellets but led to unrealistic size distributions of precipitation particles. Realistic size distributions of ice pellets were obtained by modifying the collection of rain by small ice particles and the merging criteria of ice categories in P3.

    Consulter sur egusphere.copernicus.org
  • Marinier, S., Thériault, J. M., & Ikeda, K. (2023). Changes in freezing rain occurrence over eastern Canada using convection-permitting climate simulations. Climate Dynamics, 60(5–6), 1369–1384. https://doi.org/10.1007/s00382-022-06370-6

    Abstract Freezing precipitation has major consequences for ground and air transportation, the health of citizens, and power networks. Previous studies using coarse resolution climate models have shown a northward migration of freezing rain in the future. Increased model resolution can better define local topography leading to improved representation of conditions that are favorable for freezing rain. The goal of this study is to examine the climatology and characteristics of future freezing rain events using very-high resolution climate simulations. Historical and pseudo-global warming simulations with a 4-km horizontal grid length were used and compared with available observations. Simulations revealed a northerly shift of freezing rain occurrence, and an increase in the winter. Freezing rain was still shown to occur in the Saint-Lawrence River Valley in a warmer climate, primarily due to stronger wind channeling. Up to 50% of the future freezing rain events also occurred in present day climate within 12 h of each other. In northern Maine, they are typically shorter than 6 h in current climate and longer than 6 h in warmer conditions due to the onset of precipitation during low-pressure systems occurrences. The occurrence of freezing rain also locally increases slightly north of Québec City in a warmer climate because of freezing rain that is produced by warm rain processes. Overall, the study shows that high-resolution regional climate simulations are needed to study freezing rain events in warmer climate conditions, because high horizontal resolutions better define small-scale topographic features and local physical mechanisms that have an influence on these events.

    Consulter sur link.springer.com
  • Chartrand, J., Thériault, J. M., & Marinier, S. (2023). Freezing Rain Events that Impacted the Province of New Brunswick, Canada, and Their Evolution in a Warmer Climate. Atmosphere-Ocean, 61(1), 40–56. https://doi.org/10.1080/07055900.2022.2092444
    Consulter sur www.tandfonline.com
  • Bertoncini, A., Pomeroy, J. W., & Thériault, J. M. (2024). A New GPM-DPR Algorithm to Estimate Snowfall in Mountain Regions. Preprints. https://doi.org/10.22541/essoar.171535990.06146530/v1

    Reliable precipitation forcing is essential for calculating the water balance, seasonal snowpack, glacier mass balance, streamflow, and other hydrological variables. However, satellite precipitation is often the only forcing available to run hydrological models in data-scarce regions, compromising hydrological calculations when unreliable. The IMERG product estimates precipitation quasi-globally from a combination of passive microwave and infrared satellites, which are intercalibrated based on GPM’s DPR and GMI instruments. Current GPM-DPR radar algorithms have satisfactorily estimated rainfall, but a limited consideration of PSD, attenuation correction, and ground clutter have degraded snowfall estimation, especially in mountain regions. This study aims to improve satellite radar snowfall estimates for this situation. Nearly two years (between 2019 and 2022) of aloft precipitation concentration, surface hydrometeor size, number and fall velocity, and surface precipitation rate from a high elevation site in the Canadian Rockies and collocated GPM-DPR reflectivities were used to develop a new snowfall estimation algorithm. Snowfall estimates using the new algorithm and measured GPM-DPR reflectivities were compared to other GPM-DPR-based products, including CORRA, which is employed to intercalibrate IMERG. Snowfall rates estimated with measured Ka reflectivities, and from CORRA were compared to MRR-2 observations, and had correlation, bias, and RMSE of 0.58 and 0.07, 0.43 and -0.38 mm h-1, and 0.83 and 0.85 mm h-1, respectively. Predictions using measured Ka reflectivity suggest that enhanced satellite radar snowfall estimates can be achieved using a simple measured reflectivity algorithm. These improved snowfall estimates can be adopted to intercalibrate IMERG in cold mountain regions, thereby improving regional precipitation estimates.

    Consulter sur essopenarchive.org
  • Leroux, N. R., Vionnet, V., & Thériault, J. M. (2023). Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate. Hydrological Processes, 37(11), e15028. https://doi.org/10.1002/hyp.15028

    Abstract Accurate estimations of the precipitation phase at the surface are critical for hydrological and snowpack modelling in cold regions. Precipitation phase partitioning methods (PPMs) vary in their ability to estimate the precipitation phase at around 0°C and can significantly impact simulations of snowpack accumulation and melt. The goal of this study is to evaluate PPMs of varying complexity using high‐quality observations of precipitation phase and to assess the impact on snowpack simulations. We used meteorological data collected in Edmundston, New Brunswick, Canada, during the 2021 Saint John River Experiment on Cold Season Storms (SAJESS). These data were combined with manual observations of snow depth. Five PPMs commonly used in hydrological models were tested against observations from a laser‐optical disdrometer and a Micro Rain Radar. Most PPMs produced similar accuracy in estimating only rainfall and snowfall. Mixed precipitation was the most difficult phase to predict. The multi‐physics model Crocus was then used to simulate snowpack evolution and to diagnose model sensitivity to snowpack accumulation processes (PPM, snowfall density, and snowpack compaction). Sixteen snowpack accumulation periods, including nine warm accumulation events (average temperatures above −2°C) were observed during the study period. When considering all accumulation events, simulated changes in snow water equivalent ( SWE ) were more sensitive to the type of PPM used, whereas simulated changes in snow depth were more sensitive to uncertainties in snowfall density. Choice of PPM was the main source of model sensitivity for changes in SWE and snow depth when only considering warm events. Overall, this study highlights the impact of precipitation phase estimations on snowpack accumulation at the surface during near‐0°C conditions.

    Consulter sur onlinelibrary.wiley.com
  • Leroux, N. R., Thériault, J. M., & Rasmussen, R. (2021). Improvement of Snow Gauge Collection Efficiency through a Knowledge of Solid Precipitation Fall Speed. Journal of Hydrometeorology, 22(4), 997–1006. https://doi.org/10.1175/JHM-D-20-0147.1

    Abstract The collection efficiency of a typical precipitation gauge-shield configuration decreases with increasing wind speed, with a high scatter for a given wind speed. The high scatter in the collection efficiency for a given wind speed arises in part from the variability in the characteristics of falling snow and atmospheric turbulence. This study uses weighing gauge data collected at the Marshall Field Site near Boulder, Colorado, during the WMO Solid Precipitation Intercomparison Experiment (SPICE). Particle diameter and fall speed data from a laser disdrometer were used to show that the scatter in the collection efficiency can be reduced by considering the fall speed of solid precipitation particles. The collection efficiency was divided into two classes depending on the measured mean-event particle fall speed during precipitation events. Slower-falling particles were associated with a lower collection efficiency. A new transfer function (i.e., the relationship between collection efficiency and other meteorological variables, such as wind speed or air temperature) that includes the fall speed of the hydrometeors was developed. The root-mean-square error of the adjusted precipitation with the new transfer function with respect to a weighing gauge placed in a double fence intercomparison reference was lower than using previously developed transfer functions that only consider wind speed and air temperature. This shows that the measured fall speed of solid precipitation with a laser disdrometer accounts for a large amount of the observed scatter in weighing gauge collection efficiency.

    Consulter sur journals.ametsoc.org
  • McCray, C. D., Paquin, D., Thériault, J. M., & Bresson, É. (2022). A Multi‐Algorithm Analysis of Projected Changes to Freezing Rain Over North America in an Ensemble of Regional Climate Model Simulations. Journal of Geophysical Research: Atmospheres, 127(14), e2022JD036935. https://doi.org/10.1029/2022JD036935

    Abstract Freezing rain events have caused severe socioeconomic and ecosystem impacts. An understanding of how these events may evolve as the Earth warms is necessary to adequately adapt infrastructure to these changes. We present an analysis of projected changes to freezing rain events over North America relative to the 1980–2009 recent past climate for the periods during which +2, +3, and +4°C of global warming is attained. We diagnose freezing rain using four precipitation‐type algorithms (Cantin and Bachand, Bourgouin, Ramer, and Baldwin) applied to four simulations of the fifth‐generation Canadian Regional Climate Model (CRCM5) driven by four global climate models (GCMs). We find that the choice of driving GCM strongly influences the spatial pattern of projected change. The choice of algorithm has a comparatively smaller impact, and primarily affects the magnitude but not the sign of projected change. We identify several regions where all simulations and algorithms agree on the sign of change, with increases projected over portions of western Canada and decreases over the central, eastern, and southern United States. However, we also find large regions of disagreement on the sign of change depending on driving GCM and even ensemble member of the same GCM, highlighting the importance of examining freezing rain events in a multi‐member ensemble of simulations driven by multiple GCMs to sufficiently account for uncertainty in projections of these hazardous events. , Plain Language Summary Freezing rain events, or ice storms, can have major impacts on electrical infrastructure, agriculture, and road and air travel. Despite these impacts, relatively little research has been done on how these events may change as the Earth warms. We therefore examine several climate model simulations to determine how the frequency of freezing rain may change at different levels of future global warming. We focus in particular on how sensitive the projected changes are to the method used to identify freezing rain in the model output, as well as to the choice of climate model used to produce the projections. We find strong agreement among methods and models on a decrease in freezing rain frequency over much of the United States (from Texas northeastward to Maine) and an increase in freezing rain frequency over portions of western Canada (Alberta, Saskatchewan, Manitoba). In many other areas, however, the different methods and simulations disagree on the direction of projected change. Our findings highlight the importance of using many different climate models, rather than single simulations, to paint a clearer picture of the level of certainty in projections of freezing rain in the context of global warming. , Key Points Freezing rain is projected to increase in frequency over portions of western and central Canada and decrease over most of the United States The sign of projected changes is not highly sensitive to the precipitation‐type algorithm used to diagnose freezing rain The choice of driving global climate model is a key source of uncertainty in both the sign and magnitude of projected changes

    Consulter sur agupubs.onlinelibrary.wiley.com
  • McCray, C. D., Thériault, J. M., Paquin, D., & Bresson, É. (2022). Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing Rain in an Ensemble of Regional Climate Model Simulations. Journal of Applied Meteorology and Climatology, 61(9), 1107–1122. https://doi.org/10.1175/JAMC-D-21-0202.1

    Abstract Given their potentially severe impacts, understanding how freezing rain events may change as the climate changes is of great importance to stakeholders including electrical utility companies and local governments. Identification of freezing rain in climate models requires the use of precipitation-type algorithms, and differences between algorithms may lead to differences in the types of precipitation identified for a given thermodynamic profile. We explore the uncertainty associated with algorithm selection by applying four algorithms (Cantin and Bachand, Baldwin, Ramer, and Bourgouin) offline to an ensemble of simulations of the fifth-generation Canadian Regional Climate Model (CRCM5) at 0.22° grid spacing. First, we examine results for the CRCM5 driven by ERA-Interim reanalysis to analyze how well the algorithms reproduce the recent climatology of freezing rain and how results vary depending on algorithm parameters and the characteristics of available model output. We find that while the Ramer and Baldwin algorithms tend to be better correlated with observations than Cantin and Bachand or Bourgouin, their results are highly sensitive to algorithm parameters and to the number of pressure levels used. We also apply the algorithms to four CRCM5 simulations driven by different global climate models (GCMs) and find that the uncertainty associated with algorithm selection is generally similar to or greater than that associated with choice of driving GCM for the recent past climate. Our results provide guidance for future studies on freezing rain in climate simulations and demonstrate the importance of accounting for uncertainty between algorithms when identifying precipitation type from climate model output. Significance Statement Freezing rain events and ice storms can have major consequences, including power outages and dangerous road conditions. It is therefore important to understand how climate change might affect the frequency and severity of these events. One source of uncertainty in climate studies of these events is related to the choice of algorithm used to detect freezing rain in model output. We compare the frequency of freezing rain identified using four different algorithms and find sometimes large differences depending on the algorithm chosen over some regions. Our findings highlight the importance of taking this source of uncertainty into account and will provide researchers with guidance as to which algorithms are best suited for climate studies of freezing rain.

    Consulter sur journals.ametsoc.org
  • Thériault, J. M., McFadden, V., Thompson, H. D., & Cholette, M. (2022). Meteorological Factors Responsible for Major Power Outages during a Severe Freezing Rain Storm over Eastern Canada. Journal of Applied Meteorology and Climatology, 61(9), 1239–1255. https://doi.org/10.1175/JAMC-D-21-0217.1

    Abstract Winter precipitation is the source of many inconveniences in many regions of North America, for both infrastructure and the economy. The ice storm that hit the Canadian Maritime Provinces on 24–26 January 2017 remains one of the most expensive in history for the province of New Brunswick. Up to 50 mm of freezing rain caused power outages across the province, depriving up to one-third of New Brunswick residences of electricity, with some outages lasting 2 weeks. This study aims to use high-resolution atmospheric modeling to investigate the meteorological conditions during this severe storm and their contribution to major power outages. The persistence of a deep warm layer aloft, coupled with the slow movement of the associated low pressure system, contributed to widespread ice accumulation. When combined with the strong winds observed, extensive damage to electricity networks was inevitable. A 2-m temperature cold bias was identified between the simulation and the observations, in particular during periods of freezing rain. In the northern part of New Brunswick, cold-air advection helped keep temperatures below 0°C, while in southern regions, the 2-m temperature increased rapidly to slightly above 0°C because of radiational heating. The knowledge gained in this study on the processes associated with either maintaining or stopping freezing rain will enhance the ability to forecast and, in turn, to mitigate the hazards associated with those extreme events. Significance Statement A slow-moving low pressure system produced up to 50 mm of freezing rain for 31 h along the east coast of New Brunswick, Canada, on 24–26 January 2017, causing unprecedented power outages. Warm-air advection aloft, along with a combination of higher wind speeds and large amounts of ice accumulation, created ideal conditions for severe freezing rain. The storm began with freezing rain along the entire north–south cross section of eastern New Brunswick and changed to rain only in the south, when local temperatures increased to >0°C. Near-surface cold-air advection kept temperatures below 0°C in the north. Warming from the latent heat produced by freezing contributed to persistent near-0°C conditions during freezing rain.

    Consulter sur journals.ametsoc.org
  • Cholette, M., Thériault, J. M., Milbrandt, J. A., & Morrison, H. (2020). Impacts of Predicting the Liquid Fraction of Mixed-Phase Particles on the Simulation of an Extreme Freezing Rain Event: The 1998 North American Ice Storm. Monthly Weather Review, 148(9), 3799–3823. https://doi.org/10.1175/MWR-D-20-0026.1

    Abstract A prognostic equation for the liquid fraction of mixed-phase particles has been recently added to the Predicted Particle Properties (P3) bulk microphysics scheme. Mixed-phase particles are necessary to simulate key microphysical processes leading to various winter precipitation types, such as ice pellets and freezing rain. To illustrate the impacts of predicting the bulk liquid fraction, the 1998 North American Ice Storm is simulated using the Weather Research and Forecasting (WRF) Model with the modified P3 scheme. It is found that simulating partial melting by predicting the bulk liquid fraction produces higher mass and number mixing ratios of rain. This leads to smaller rain sizes reaching the refreezing layer as well as a decrease in the freezing rain accumulation at the surface by up to 30% in some locations compared to when no liquid fraction is predicted. The increase in fall speed and density and decrease of particle diameter during partial melting combined with an improved representation of the refreezing process in the modified P3 leads to generally higher total solid surface precipitation rates than using the original P3 scheme. There is also an increase of solid precipitation in regions of ice pellet accumulation. Overall, the simulation of mixed-phase particles notably impacts the vertical and spatial distributions of precipitation properties.

    Consulter sur journals.ametsoc.org
  • Lachapelle, M., Thompson, H. D., Leroux, N. R., & Thériault, J. M. (2024). Measuring Ice Pellets and Refrozen Wet Snow Using a Laser-Optical Disdrometer. Journal of Applied Meteorology and Climatology, 63(1), 65–84. https://doi.org/10.1175/JAMC-D-22-0202.1

    Abstract This study aims to characterize the shapes and fall speeds of ice pellets formed in various atmospheric conditions and to investigate the possibility to use a laser-optical disdrometer to distinguish between ice pellets and other types of precipitation. To do so, four ice pellet events were documented using manual observations, macrophotography, and laser-optical disdrometer data. First, various ice pellet fall speeds and shapes, including spherical, bulged, fractured, and irregular particles, were associated with distinct atmospheric conditions. A higher fraction of bulged and fractured ice pellets was observed when solid precipitation was completely melted aloft while more irregular particles were observed during partial melting. These characteristics affected the diameter–fall speed relations measured. Second, the measurements of particles’ fall speed and diameter show that ice pellets could be differentiated from rain or freezing rain. Ice pellets larger than 1.5 mm tend to fall > 0.5 m s −1 slower than raindrops of the same size. In addition, the fall speed of a small fraction of ice pellets was < 2 m s −1 regardless of their size, as compared with a fall speed > 3 m s −1 for ice pellets with diameter > 1.5 mm. Video analysis suggests that these slower particles could be ice pellets passing through the laser-optical disdrometer after colliding with the head of the instrument. Overall, these findings contribute to a better understanding of the microphysics of ice pellets and their measurement using a laser-optical disdrometer. Significance Statement Ice pellets are challenging to forecast and to detect automatically. In this study, we documented the fall speed and physical characteristics of ice pellets during various atmospheric conditions using a combination of a laser-optical disdrometer, manual observations, and macrophotography images. Relationships were found between the shape and fall speed of ice pellets. These findings could be used to refine the parameterization of ice pellets in atmospheric models and, consequently, improve the forecast of impactful winter precipitation types such as freezing rain. Furthermore, they will also help to physically interpret laser-optical disdrometer data during ice pellets and freezing rain.

    Consulter sur journals.ametsoc.org
  • Lachapelle, M., Thériault, J. M., & Thompson, H. D. (2023). Observation data for four ice pellet events. Borealis. https://doi.org/10.5683/SP3/TGS5HU

    This dataset contains the observation data used to prepare the thesis of Mathieu Lachapelle. It contains radar data, laser-optical disdrometer data, standard meteorological data, manual observations, and macrophotography recorded during four ice pellet events that occurred in 2019 and 2020. The ice pellet episodes occurred in the Montreal region and most observational data were collected at UQAM-PK weather station, on the rooftop of President Kennedy building, in Downtown Montreal. More documentation is available in the READMEs provided with the dataset. Cette base de données contient les données d'observation utilisées pour rédiger la thèse de Mathieu Lachapelle. Elle inclut des données radar, des données d'un disdromètre optique, des mesures météorologiques de base, des observations manuelles et des macro photographies collectées pendant quatre épisodes de grésil qui se sont produit en 2019 et en 2020. Les épisodes de grésil ont eu lieu dans la région de Montréal et la plupart des données d'observation ont été collectées à la station météo UQAM-PK, installée sur le toit du bâtiment Président-Kennedy au centre-ville de Montréal. Davantage de documentation est accessible via les fichiers READMEs inclus dans la base de données.

    Consulter sur borealisdata.ca
  • Thériault, J. M., Leroux, N. R., Tchuem Tchuente, O., & Stewart, R. E. (2023). Characteristics of Rain-Snow Transitions Over the Canadian Rockies and their Changes in Warmer Climate Conditions. Atmosphere-Ocean, 61(5), 352–367. https://doi.org/10.1080/07055900.2023.2251938
    Consulter sur www.tandfonline.com
  • Richards-Thomas, T. S., Déry, S. J., Stewart, R. E., & Thériault, J. M. (2024). Climatological context of the mid-November 2021 floods in the province of British Columbia, Canada. Weather and Climate Extremes, 45, 100705. https://doi.org/10.1016/j.wace.2024.100705
    Consulter sur linkinghub.elsevier.com
  • Stewart, R., Liu, Z., Painchaud-Niemi, D., Hanesiak, J., & Thériault, J. M. (2023). Adhering Solid Precipitation in the Current and Pseudo-Global Warming Future Climate over the Canadian Provinces of Manitoba and Saskatchewan. Atmosphere, 14(2), 396. https://doi.org/10.3390/atmos14020396

    Solid precipitation falling near 0 °C, mainly snow, can adhere to surface features and produce major impacts. This study is concerned with characterizing this precipitation over the Canadian Prairie provinces of Manitoba and Saskatchewan in the current (2000–2013) and pseudo-global warming future climate, with an average 5.9 °C temperature increase, through the use of high resolution (4 km) model simulations. On average, simulations in the current climate suggest that this precipitation occurs within 11 events per year, lasting 33.6 h in total and producing 27.5 mm melted equivalent, but there are wide spatial variations that are partly due to enhancements arising from its relatively low terrain. Within the warmer climate, average values generally increase, and spatial patterns shift somewhat. This precipitation consists of four categories covering its occurrence just below and just above a wet-bulb temperature of 0 °C, and with or without liquid precipitation. It generally peaks in March or April, as well as in October, and these peaks move towards mid-winter by approximately one month within the warmer climate. Storms producing this precipitation generally produce winds with a northerly component during or shortly after the precipitation; these winds contribute to further damage. Overall, this study has determined the features of and expected changes to adhering precipitation across this region.

    Consulter sur www.mdpi.com
  • Colli, M., Stagnaro, M., Lanza, L. G., Rasmussen, R., & Thériault, J. M. (2020). Adjustments for Wind-Induced Undercatch in Snowfall Measurements Based on Precipitation Intensity. Journal of Hydrometeorology, 21(5), 1039–1050. https://doi.org/10.1175/JHM-D-19-0222.1

    Abstract Adjustments for the wind-induced undercatch of snowfall measurements use transfer functions to account for the expected reduction of the collection efficiency with increasing the wind speed for a particular catching-type gauge. Based on field experiments or numerical simulation, collection efficiency curves as a function of wind speed also involve further explanatory variables such as surface air temperature and/or precipitation type. However, while the wind speed or wind speed and temperature approach is generally effective at reducing the measurement bias, it does not significantly reduce the root-mean-square error (RMSE) of the residuals, implying that part of the variance is still unexplained. In this study, we show that using precipitation intensity as the explanatory variable significantly reduces the scatter of the residuals. This is achieved by optimized curve fitting of field measurements from the Marshall Field Site (Colorado, United States), using a nongradient optimization algorithm to ensure optimal binning of experimental data. The analysis of a recent quality-controlled dataset from the Solid Precipitation Intercomparison Experiment (SPICE) campaign of the World Meteorological Organization confirms the scatter reduction, showing that this approach is suitable to a variety of locations and catching-type gauges. Using computational fluid dynamics simulations, we demonstrate that the physical basis of the reduction in RMSE is the correlation of precipitation intensity with the particle size distribution. Overall, these findings could be relevant in operational conditions since the proposed adjustment of precipitation measurements only requires wind sensor and precipitation gauge data.

    Consulter sur journals.ametsoc.org
  • Chen, T., Di Luca, A., Winger, K., Laprise, R., & Thériault, J. M. (2022). Seasonality of Continental Extratropical‐Cyclone Wind Speeds Over Northeastern North America. Geophysical Research Letters, 49(15), e2022GL098776. https://doi.org/10.1029/2022GL098776

    Abstract This study investigates the seasonality of near‐surface wind speeds associated with extratropical cyclones (ETCs) over northeastern North America using a global reanalysis data set during 1979–2020. As opposed to most studies that emphasize winter storms, ETCs during the fall exhibit significantly stronger 10‐m winds over this region due to the slightly stronger continental cyclones and significantly weaker low‐level stability during that time of the year. Also, ETCs favor inland lakes and Hudson Bay during the low‐ice‐content fall season, leading to lower surface roughness. Combining these results, we derive simple linear regressions to predict the 10‐m wind speed given three variables: 850‐hPa wind speed, low‐level Richardson number, and surface roughness length. This formula captures the observed seasonality and serves as a valuable tool for cyclone near‐surface wind risk assessment. , Plain Language Summary Extratropical cyclones can bring powerful winds that can cause severe damage to infrastructure. We find that cyclones with severe winds are the most frequent in the fall season over continental northeastern North America. Three reasons are found responsible: stronger continental cyclones, weaker low‐level atmospheric stability, and the lower surface roughness over lakes and Hudson Bay, where cyclones frequently occur in fall. A simple formula that can effectively assess the near‐surface wind speeds associated with cyclones is derived based on these results. , Key Points Extratropical‐cyclone‐associated 10‐m wind speeds are the strongest in the fall season over northeastern North America Besides stronger continental cyclones and 850‐hPa winds, weaker low‐level stability in fall favors stronger 10‐m wind speeds in this region Linear regression using 850‐hPa wind, Richardson number, and surface roughness well predicts cyclones' 10‐m wind speeds and seasonality

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Cardinal, É., Thériault, J. M., Stewart, R. E., Thompson, H. D., & Déry, S. J. (2024). Climatology of and Factors Contributing to Occurrences of Near-0°C Temperatures and Associated Precipitation At and Near Terrace, British Columbia, Canada. Atmosphere-Ocean, 62(2), 145–164. https://doi.org/10.1080/07055900.2023.2270560
    Consulter sur www.tandfonline.com
  • 1
  • 2
  • Page 1 de 2
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Di Luca, Alejandro (1)
  • Thériault, Julie M. (34)

Type de ressource

  • Article de revue (27)
  • Jeu de données (4)
  • Prépublication (3)

Année de publication

  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2020 (4)
      • 2021 (4)
      • 2022 (8)
      • 2023 (9)
      • 2024 (9)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web