Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Thériault, Julie M."

Résultats 60 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • Page 3 de 3
Résumés
  • Thériault, J. M., Rasmussen, R., Petro, E., Trépanier, J.-Y., Colli, M., & Lanza, L. G. (2015). Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection Efficiency of the Double Fence Intercomparison Reference. Journal of Applied Meteorology and Climatology, 54(9), 1918–1930. https://doi.org/10.1175/JAMC-D-15-0034.1

    Abstract The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge–shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall.

    Consulter sur journals.ametsoc.org
  • Bédard-Therrien, A., Anctil, F., Thériault, J. M., Chalifour, O., Payette, F., Vidal, A., & Nadeau, D. F. (2024). Leveraging a Disdrometer Network to Develop a Probabilistic Precipitation Phase Model in Eastern Canada. Hydrometeorology/Modelling approaches. https://doi.org/10.5194/hess-2024-78

    Abstract. This study presents a probabilistic model that partitions the precipitation phase based on hourly measurements from a network of radar-based disdrometers in eastern Canada. The network consists of 27 meteorological stations located in a boreal climate for the years 2020–2023. Precipitation phase observations showed a 2-m air temperature interval between 0–4 °C where probabilities of occurrence of solid, liquid, or mixed precipitation significantly overlapped. Single-phase precipitation was also found to occur more frequently than mixed-phase precipitation. Probabilistic phase-guided partitioning (PGP) models of increasing complexity using random forest algorithms were developed. The PGP models classified the precipitation phase and partitioned the precipitation accordingly into solid and liquid amounts. PGP_basic is based on 2-m air temperature and site elevation, while PGP_hydromet integrates relative humidity. PGP_full includes all the above data plus atmospheric reanalysis data. The PGP models were compared to benchmark precipitation phase partitioning methods. These included a single temperature threshold model set at 1.5 °C, a linear transition model with dual temperature thresholds of –0.38 and 5 °C, and a psychrometric balance model. Among the benchmark models, the single temperature threshold had the best classification performance (F1 score of 0.74) due to a low count of mixed-phase events. The other benchmark models tended to over-predict mixed-phase precipitation in order to decrease partitioning error. All PGP models showed significant phase classification improvement by reproducing the observed overlapping precipitation phases based on 2-m air temperature. PGP_hydromet and PGP_full displayed the best classification performance (F1 score of 0.84). In terms of partitioning error, PGP_full had the lowest RMSE (0.27 mm) and the least variability in performance. The RMSE of the single temperature threshold model was the highest (0.40 mm) and showed the greatest performance variability. An input variable importance analysis revealed that the additional data used in the more complex PGP models mainly improved mixed-phase precipitation prediction. The improvement of mixed-phase prediction remains a challenge. Relative humidity was deemed the least important input variable used, due to consistent near water vapor saturation conditions. Additionally, the reanalysis atmospheric data proved to be an important factor to increase the robustness of the partitioning process. This study establishes a basis for integrating automated phase observations into a hydrometeorological observation network and developing probabilistic precipitation phase models.

    Consulter sur hess.copernicus.org
  • Thériault, J. M., Milbrandt, J. A., Doyle, J., Minder, J. R., Thompson, G., Sarkadi, N., & Geresdi, I. (2015). Impact of melting snow on the valley flow field and precipitation phase transition. Atmospheric Research, 156, 111–124. https://doi.org/10.1016/j.atmosres.2014.12.006
    Consulter sur linkinghub.elsevier.com
  • Beaudry, F. L., Bélair, S., Thériault, J. M., Khedhaouiria, D., Lespinas, F., Michelson, D., Feng, P.-N., & Aubry, C. (2024). Impact of Assimilating Radar Solid Precipitation Data in the Canadian Precipitation Analysis System. Journal of Hydrometeorology, 25(7), 1081–1097. https://doi.org/10.1175/JHM-D-23-0163.1

    Abstract The Canadian Precipitation Analysis (CaPA) system provides near-real-time precipitation analyses over Canada by combining observations with short-term numerical weather prediction forecasts. CaPA’s snowfall estimates suffer from the lack of accurate solid precipitation measurements to correct the first-guess estimate. Weather radars have the potential to add precipitation measurements to CaPA in all seasons but are not assimilated in winter due to radar snowfall estimate imprecision and lack of precipitation gauges for calibration. The main objective of this study is to assess the impact of assimilating Canadian dual-polarized radar-based snowfall data in CaPA to improve precipitation estimates. Two sets of experiments were conducted to evaluate the impact of including radar snowfall retrievals, one set using the high-resolution CaPA (HRDPA) with the currently operational quality control configuration and another increasing the number of assimilated surface observations by relaxing quality control. Experiments spanned two winter seasons (2021 and 2022) in central Canada, covering part of the entire CaPA domain. The results showed that the assimilation of radar-based snowfall data improved CaPA’s precipitation estimates 81.75% of the time for 0.5-mm precipitation thresholds. An increase in the probability of detection together with a decrease in the false alarm ratio suggested an improvement of the precipitation spatial distribution and estimation accuracy. Additionally, the results showed improvements for both precipitation mass and frequency biases for low precipitation amounts. For larger thresholds, the frequency bias was degraded. The results also indicated that the assimilation of dual-polarization radar data is beneficial for the two CaPA configurations tested in this study.

    Consulter sur journals.ametsoc.org
  • Thériault, J. M., Rasmussen, R., Smith, T., Mo, R., Milbrandt, J. A., Brugman, M. M., Joe, P., Isaac, G. A., Mailhot, J., & Denis, B. (2012). A Case Study of Processes Impacting Precipitation Phase and Intensity during the Vancouver 2010 Winter Olympics. Weather and Forecasting, 27(6), 1301–1325. https://doi.org/10.1175/WAF-D-11-00114.1

    Abstract Accurate forecasting of precipitation phase and intensity was critical information for many of the Olympic venue managers during the Vancouver 2010 Olympic and Paralympic Winter Games. Precipitation forecasting was complicated because of the complex terrain and warm coastal weather conditions in the Whistler area of British Columbia, Canada. The goal of this study is to analyze the processes impacting precipitation phase and intensity during a winter weather storm associated with rain and snow over complex terrain. The storm occurred during the second day of the Olympics when the downhill ski event was scheduled. At 0000 UTC 14 February, 2 h after the onset of precipitation, a rapid cooling was observed at the surface instrumentation sites. Precipitation was reported for 8 h, which coincided with the creation of a nearly 0°C isothermal layer, as well as a shift of the valley flow from up valley to down valley. Widespread snow was reported on Whistler Mountain with periods of rain at the mountain base despite the expectation derived from synoptic-scale models (15-km grid spacing) that the strong warm advection would maintain temperatures above freezing. Various model predictions are compared with observations, and the processes influencing the temperature, wind, and precipitation types are discussed. Overall, this case study provided a well-observed scenario of winter storms associated with rain and snow over complex terrain.

    Consulter sur journals.ametsoc.org
  • Thériault, J. M., Rasmussen, K. L., Fisico, T., Stewart, R. E., Joe, P., Gultepe, I., Clément, M., & Isaac, G. A. (2014). Weather observations on Whistler Mountain during five storms. Pure and Applied Geophysics, 171(1–2), 129–155. https://doi.org/10.1007/s00024-012-0590-5
    Consulter sur link.springer.com
  • Thompson, H. D., Thériault, J. M., Déry, S. J., Stewart, R. E., Boisvert, D., Rickard, L., Leroux, N. R., Colli, M., & Vionnet, V. (2023). Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS). Earth System Science Data, 15(12), 5785–5806. https://doi.org/10.5194/essd-15-5785-2023

    Abstract. The amount and the phase of cold-season precipitation accumulating in the upper Saint John River (SJR) basin are critical factors in determining spring runoff, ice jams, and flooding. To study the impact of winter and spring storms on the snowpack in the upper SJR basin, the Saint John River Experiment on Cold Season Storms (SAJESS) was conducted during winter–spring 2020–2021. Here, we provide an overview of the SAJESS study area, field campaign, and data collected. The upper SJR basin represents 41 % of the entire SJR watershed and encompasses parts of the US state of Maine and the Canadian provinces of Quebec and New Brunswick. In early December 2020, meteorological instruments were co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick. This included a separate weather station for measuring standard meteorological variables, an optical disdrometer, and a micro rain radar. This instrumentation was augmented during an intensive observation period that also included upper-air soundings, surface weather observations, a multi-angle snowflake camera, and macrophotography of solid hydrometeors throughout March and April 2021. During the study, the region experienced a lower-than-average snowpack that peaked at ∼ 65 cm, with a total of 287 mm of precipitation (liquid-equivalent) falling between December 2020 and April 2021, a 21 % lower amount of precipitation than the climatological normal. Observers were present for 13 storms during which they conducted 183 h of precipitation observations and took more than 4000 images of hydrometeors. The inclusion of local volunteers and schools provided an additional 1700 measurements of precipitation amounts across the area. The resulting datasets are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2023). We also include a synopsis of the data management plan and a brief assessment of the rewards and challenges of conducting the field campaign and utilizing community volunteers for citizen science.

    Consulter sur essd.copernicus.org
  • Bélair, S., Feng, P.-N., Lespinas, F., Khedhaouiria, D., Hudak, D., Michelson, D., Aubry, C., Beaudry, F., Carrera, M. L., & Thériault, J. M. (2024). IMERG in the Canadian Precipitation Analysis (CaPA) System for Winter Applications. Atmosphere, 15(7), 763. https://doi.org/10.3390/atmos15070763

    Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation Measurement mission) into CaPA is examined in this study. Tests are conducted with CaPA’s 10 km deterministic version, evaluated over Canada and the northern part of the United States (USA). Maps from a case study show that IMERG plays a contradictory role in the production of CaPA’s precipitation analyses for a synoptic-scale winter storm over North America’s eastern coast. While its contribution appears to be physically correct over southern portions of the meteorological system, and early in its intensification phase, IMERG displays unrealistic spatial structures over land later in the system’s life cycle when it is located over northern (colder) areas. Objective evaluation of CaPA’s analyses when IMERG is assimilated without any restrictions shows an overall decrease in precipitation, which has a mixed effect (positive and negative) on the bias indicators. But IMERG’s influence on the Equitable Threat Score (ETS), a measure of CaPA’s analyses accuracy, is clearly negative. Using IMERG’s quality index (QI) to filter out areas where it is less accurate improves CaPA’s objective evaluation, leading to better ETS versus the control experiment in which no IMERG data are assimilated. Several diagnostics provide insight into the nature of IMERG’s contribution to CaPA. For the most successful configuration, with a QI threshold of 0.3, IMERG’s impact is mostly found in the warmer parts of the domain, i.e., in northern US states and in British Columbia. Spatial means of the temporal sums of absolute differences between CaPA’s analyses with and without IMERG indicate that this product also contributes meaningfully over land areas covered by snow, and areas where air temperature is below −2 °C (where precipitation is assumed to be in solid phase).

    Consulter sur www.mdpi.com
  • Li, Y., Szeto, K., Stewart, R. E., Thériault, J. M., Chen, L., Kochtubajda, B., Liu, A., Boodoo, S., Goodson, R., Mooney, C., & Kurkute, S. (2017). A Numerical Study of the June 2013 Flood-Producing Extreme Rainstorm over Southern Alberta. Journal of Hydrometeorology, 18(8), 2057–2078. https://doi.org/10.1175/JHM-D-15-0176.1

    Abstract A devastating, flood-producing rainstorm occurred over southern Alberta, Canada, from 19 to 22 June 2013. The long-lived, heavy rainfall event was a result of complex interplays between topographic, synoptic, and convective processes that rendered an accurate simulation of this event a challenging task. In this study, the Weather Research and Forecasting (WRF) Model was used to simulate this event and was validated against several observation datasets. Both the timing and location of the model precipitation agree closely with the observations, indicating that the WRF Model is capable of reproducing this type of severe event. Sensitivity tests with different microphysics schemes were conducted and evaluated using equitable threat and bias frequency scores. The WRF double-moment 6-class microphysics scheme (WDM6) generally performed better when compared with other schemes. The application of a conventional convective/stratiform separation algorithm shows that convective activity was dominant during the early stages, then evolved into predominantly stratiform precipitation later in the event. The HYSPLIT back-trajectory analysis and regional water budget assessments using WRF simulation output suggest that the moisture for the precipitation was mainly from recycling antecedent soil moisture through evaporation and evapotranspiration over the Canadian Prairies and the U.S. Great Plains. This analysis also shows that a small fraction of the moisture can be traced back to the northeastern Pacific, and direct uptake from the Gulf of Mexico was not a significant source in this event.

    Consulter sur journals.ametsoc.org
  • Thompson, H. D., Thériault, J. M., Rickard, L., Déry, S. J., Leroux, N. R., Stewart, R. E., Vionnet, V., Colli, M., & Boisvert, D. (2023). Atmospheric and surface observation data collected during the Saint John River Experiment on Cold Season Storms. Federated Research Data Repository / dépôt fédéré de données de recherche. https://doi.org/10.20383/103.0591

    Meteorological data, manual observations, and photographic images of hydrometeors recorded during the Saint John River Experiment on Cold Season Storms. The dataset covers the period December 2020 to April 2021, with an intensive observation period from March 2021 to April 2021.

    Consulter sur www.frdr-dfdr.ca
  • Stewart, R. E., Szeto, K. K., Bonsal, B. R., Hanesiak, J. M., Kochtubajda, B., Li, Y., Thériault, J. M., DeBeer, C. M., Tam, B. Y., Li, Z., Liu, Z., Bruneau, J. A., Marinier, S., & Matte, D. (2019). A Review and Synthesis of Future Earth System Change in theInterior of Western Canada: Part I – Climate and Meteorology. Hydrometeorology/Modelling approaches. https://doi.org/10.5194/hess-2019-51

    Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.

    Consulter sur hess.copernicus.org
  • Thériault, J. M., Leroux, N. R., Stewart, R. E., Bertoncini, A., Déry, S. J., Pomeroy, J. W., Thompson, H. D., Smith, H., Mariani, Z., Desroches-Lapointe, A., Mitchell, S., & Almonte, J. (2022). Storms and Precipitation Across the continental Divide Experiment (SPADE). Bulletin of the American Meteorological Society, 103(11), E2628–E2649. https://doi.org/10.1175/BAMS-D-21-0146.1

    Abstract The Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields.

    Consulter sur journals.ametsoc.org
  • Muhlbauer, A., Grabowski, W. W., Malinowski, S. P., Ackerman, T. P., Bryan, G. H., Lebo, Z. J., Milbrandt, J. A., Morrison, H., Ovchinnikov, M., Tessendorf, S., Thériault, J. M., & Thompson, G. (2013). Reexamination of the State of the Art of Cloud Modeling Shows Real Improvements. Bulletin of the American Meteorological Society, 94(5), ES45–ES48. https://doi.org/10.1175/BAMS-D-12-00188.1
    Consulter sur journals.ametsoc.org
  • Thériault, J. M., Déry, S. J., Pomeroy, J. W., Smith, H. M., Almonte, J., Bertoncini, A., Crawford, R. W., Desroches-Lapointe, A., Lachapelle, M., Mariani, Z., Mitchell, S., Morris, J. E., Hébert-Pinard, C., Rodriguez, P., & Thompson, H. D. (2021). Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019. Earth System Science Data, 13(3), 1233–1249. https://doi.org/10.5194/essd-13-1233-2021

    Abstract. The continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076 m a.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580 m a.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087 m a.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event.

    Consulter sur essd.copernicus.org
  • Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., & Gutmann, E. (2012). How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bulletin of the American Meteorological Society, 93(6), 811–829. https://doi.org/10.1175/BAMS-D-11-00052.1
    Consulter sur journals.ametsoc.org
  • Thériault, J. M., Déry, S. J., Pomeroy, J., Stewart, R. E., Smith, H., Thompson, H., Bertoncini, A., Desroches-Lapointe, A., Hébert-Pinard, C., Mitchell, S., Morris, J., Almonte, J., Lachapelle, M., Mariani, Z., & Carton, C. (2020). Meteorological observations and measurements collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April – June 2019. Federated Research Data Repository / dépôt fédéré de données de recherche. https://doi.org/10.20383/101.0221

    Global Water Future’s Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the contribution of different moisture flows on precipitation across the Canadian Rockies. SPADE installed instrumentation on both sides of the continental divide to gather automated and manual observations during an intensive field campaign from 24 April to 26 June 2019. Various meteorological instruments were deployed including a two Doppler LiDARs, three vertically pointing micro rain radars and three optical disdrometers, alongside human observers during precipitation events. Detailed meteorological data such as air temperature, relative humidity, 3D wind fields, vertical profiles of radar reflectivity and Doppler velocity, precipitation and its type, and snow microphotography images were collected. This dataset will serve as a baseline for future work on atmospheric conditions over major orographic features by comparing the varying conditions on either side of a large topographic feature.

    Consulter sur www.frdr-dfdr.ca
  • Minder, J. R., Bassill, N., Fabry, F., French, J. R., Friedrich, K., Gultepe, I., Gyakum, J., Kingsmill, D. E., Kosiba, K., Lachapelle, M., Michelson, D., Nichman, L., Nguyen, C., Thériault, J. M., Winters, A. C., Wolde, M., & Wurman, J. (2023). P-Type Processes and Predictability: The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX). Bulletin of the American Meteorological Society, 104(8), E1469–E1492. https://doi.org/10.1175/BAMS-D-22-0095.1

    Abstract During near-0°C surface conditions, diverse precipitation types (p-types) are possible, including rain, drizzle, freezing rain, freezing drizzle, ice pellets, wet snow, snow, and snow pellets. Near-0°C precipitation affects wide swaths of the United States and Canada, impacting aviation, road transportation, power generation and distribution, winter recreation, ecology, and hydrology. Fundamental challenges remain in observing, diagnosing, simulating, and forecasting near-0°C p-types, particularly during transitions and within complex terrain. Motivated by these challenges, the field phase of the Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX) was conducted from 1 February to 15 March 2022 to better understand how multiscale processes influence the variability and predictability of p-type and amount under near-0°C surface conditions. WINTRE-MIX took place near the U.S.–Canadian border, in northern New York and southern Quebec, a region with plentiful near-0°C precipitation influenced by terrain. During WINTRE-MIX, existing advanced mesonets in New York and Quebec were complemented by deployment of 1) surface instruments, 2) the National Research Council Convair-580 research aircraft with W- and X-band Doppler radars and in situ cloud and aerosol instrumentation, 3) two X-band dual-polarization Doppler radars and a C-band dual-polarization Doppler radar from the University of Illinois, and 4) teams collecting manual hydrometeor observations and radiosonde measurements. Eleven intensive observing periods (IOPs) were coordinated. Analysis of these WINTRE-MIX IOPs is illuminating how synoptic dynamics, mesoscale dynamics, and microscale processes combine to determine p-type and its predictability under near-0°C conditions. WINTRE-MIX research will contribute to improving nowcasts and forecasts of near-0°C precipitation through evaluation and refinement of observational diagnostics and numerical forecast models.

    Consulter sur journals.ametsoc.org
  • Kochendorfer, J., Earle, M., Rasmussen, R., Smith, C., Yang, D., Morin, S., Mekis, E., Buisan, S., Roulet, Y.-A., Landolt, S., Wolff, M., Hoover, J., Thériault, J. M., Lee, G., Baker, B., Nitu, R., Lanza, L., Colli, M., & Meyers, T. (2022). How Well Are We Measuring Snow Post-SPICE? Bulletin of the American Meteorological Society, 103(2), E370–E388. https://doi.org/10.1175/BAMS-D-20-0228.1

    Abstract Accurate snowfall measurements are necessary for meteorology, hydrology, and climate research. Typical uses include creating and calibrating gridded precipitation products, the verification of model simulations, driving hydrologic models, input into aircraft deicing processes, and estimating streamflow runoff in the spring. These applications are significantly impacted by errors in solid precipitation measurements. The recent WMO Solid Precipitation Intercomparison Experiment (SPICE) attempted to characterize and reduce some of the measurement uncertainties through an international effort involving 15 countries utilizing over 20 types and models of precipitation gauges from various manufacturers. Key results from WMO-SPICE are presented herein. Recent work and future research opportunities that build on the results of WMO-SPICE are also highlighted.

    Consulter sur journals.ametsoc.org
  • Joe, P., Scott, B., Doyle, C., Isaac, G., Gultepe, I., Forsyth, D., Cober, S., Campos, E., Heckman, I., Donaldson, N., Hudak, D., Rasmussen, R., Kucera, P., Stewart, R., Thériault, J. M., Fisico, T., Rasmussen, K. L., Carmichael, H., Laplante, A., … Boudala, F. (2014). The Monitoring Network of the Vancouver 2010 Olympics. Pure and Applied Geophysics, 171(1–2), 25–58. https://doi.org/10.1007/s00024-012-0588-z
    Consulter sur link.springer.com
  • DeBeer, C. M., Wheater, H. S., Pomeroy, J. W., Barr, A. G., Baltzer, J. L., Johnstone, J. F., Turetsky, M. R., Stewart, R. E., Hayashi, M., Van Der Kamp, G., Marshall, S., Campbell, E., Marsh, P., Carey, S. K., Quinton, W. L., Li, Y., Razavi, S., Berg, A., McDonnell, J. J., … Pietroniro, A. (2021). Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology. Hydrology and Earth System Sciences, 25(4), 1849–1882. https://doi.org/10.5194/hess-25-1849-2021

    Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

    Consulter sur hess.copernicus.org
  • 1
  • 2
  • 3
  • Page 3 de 3
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Di Luca, Alejandro (1)
  • Thériault, Julie M. (60)

Type de ressource

  • Article de revue (52)
  • Jeu de données (4)
  • Prépublication (4)

Année de publication

  • Entre 2000 et 2025 (60)
    • Entre 2010 et 2019 (26)
      • 2010 (2)
      • 2012 (4)
      • 2013 (1)
      • 2014 (2)
      • 2015 (5)
      • 2016 (3)
      • 2017 (2)
      • 2018 (2)
      • 2019 (5)
    • Entre 2020 et 2025 (34)
      • 2020 (4)
      • 2021 (4)
      • 2022 (8)
      • 2023 (9)
      • 2024 (9)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web