Votre recherche
Résultats 2 ressources
-
Abstract Temperatures near 0°C represent a critical threshold for many environmental processes and socio‐economic activities. This study examines surface air temperatures ( T ) near 0°C (−2°C ≤ T ≤ 2°C) across much of southern Canada over a 13 year period (October 2000–September 2013). It utilized hourly data from 39 weather stations and from 4‐km resolution Weather Research and Forecasting model simulations that were both a retrospective simulation as well as a pseudo‐global warming simulation applicable near the end of the 21st century. Average annual occurrences of near‐0°C conditions increase by a relatively small amount of 5.1% from 985 hr in the current climate to 1,035 hr within the future one. Near‐0°C occurrences with precipitation vary from <5% to approximately 50% of these values. Near‐0°C occurrences are sometimes higher than values of neighboring temperatures. These near‐0°C peaks in temperature distributions can occur in both the current and future climate, in only one, or in neither. Only 4.3% of southern Canada is not associated with a near‐0°C peak and 65.8% is associated with a near‐0°C peak in both climates. It is inferred that latent heat exchanges from the melting and freezing of, for example, precipitation and the snowpack contribute significantly to some of these findings. , Plain Language Summary Our changing climate is spurring the development of huge efforts to improve resiliency. For many regions of the world, these efforts must account for potential changes in near‐0°C conditions within which both melting and freezing can occur and the accompanying latent heat exchanges can push air temperature toward 0°C. This article focuses on the occurrence of near‐0°C surface temperatures across southern Canada through an examination of observational and model information including projections in a future warmer (average 6.1°C increase) climate near the end of the 21st century. Average annual occurrences of near‐0°C conditions increase by a relatively small amount of 5.1% in the future climate and highest values continue to be along the Pacific coast or within the Western Cordillera and lowest values continue to be within central and northern areas. Near‐0°C occurrences are often higher than those of neighboring temperatures in the present climate and some of these elevated occurrences persist into the future one despite dramatic warming. It is inferred that latent heat exchanges from the melting and freezing of precipitation and snowcover contribute to these findings. , Key Points Near‐0°C surface air temperatures were examined over southern Canada using retrospective and pseudo‐global warming simulations Overall average occurrences increase slightly and their spatial patterns are largely maintained in the warmer climate Near‐0°C occurrences sometimes exceed those of neighboring temperatures and this feature often persists despite dramatic warming
-
Abstract In mountains, the precipitation phase greatly varies in space and time and affects the evolution of the snow cover. Snowpack models usually rely on precipitation‐phase partitioning methods (PPMs) that use near‐surface variables. These PPMs ignore conditions above the surface thus limiting their ability to predict the precipitation phase at the surface. In this study, the impact on snowpack simulations of atmospheric‐based PPMs, incorporating upper atmospheric information, is tested using the snowpack scheme Crocus. Crocus is run at 2.5‐km grid spacing over the mountains of southwestern Canada and northwestern United States and is driven by meteorological fields from an atmospheric model at the same resolution. Two atmospheric‐based PPMs were considered from the atmospheric model: the output from a detailed microphysics scheme and a post‐processing algorithm determining the snow level and the associated precipitation phase. Two ground‐based PPMs were also included as lower and upper benchmarks: a single air temperature threshold at 0°C and a PPM using wet‐bulb temperature. Compared to the upper benchmark, the snow‐level based PPM improved the estimation of snowfall occurrence by 5% and the simulation of snow water equivalent (SWE) by 9% during the snow melting season. In contrast, due to missing processes, the microphysics scheme decreased performances in phase estimate and SWE simulations compared to the upper benchmark. These results highlight the need for detailed evaluation of the precipitation phase from atmospheric models and the benefit for mountain snow hydrology of the post‐processed snow level. The limitations to drive snowpack models at slope scale are also discussed. , Plain Language Summary The partitioning of precipitation between rainfall and snowfall is a crucial component of the evolution of the snowpack in mountains. Most snowpack models use the air temperature and humidity near the surface to derive the precipitation phase. However, the phase at the surface is strongly influenced by processes such as melting and refreezing of falling hydrometeors that occur above the surface. Atmospheric models simulate these processes and the corresponding phase at the surface. However, snowpack models rarely use this information. In this study, we considered two estimates of precipitation phase from an atmospheric model and tested them with a physically‐based snow model over the mountains of southwestern Canada and northwestern United States. The results were compared with traditional approaches using the air temperature and humidity near the surface to derive the precipitation phase. Our results showed that the precipitation phase associated with the snow level obtained from the atmospheric model improved snowfall estimate and snowpack prediction compared to the traditional approaches. In contrast, the cloud/precipitation scheme of the atmospheric model decreased performance in phase estimate and snow simulations due to missing physical processes. Our study highlights that snowpack predictions in the mountains can be improved if valuable information is obtained from atmospheric models. , Key Points Estimates of precipitation phase from an atmospheric model were used to drive snow simulations with a detailed snowpack model Snowfall prediction and snowpack modeling are improved by using the snow level from post‐processing of the atmospheric model Direct precipitation phase from the microphysics scheme does not improve snow simulations compared to simpler rain‐snow partitioning schemes